PlanetMath: Colorings Of Plane Graphs This seems to have been discovered independently a few times, most notably byPercy J. heawood (bio at St Andrews). We can call the vertex colors black and http://planetmath.org/encyclopedia/ColoringsOfPlaneGraphs.html
Extractions: colorings of plane graphs (Topic) This is the first draft of this write-up. Corrections of its contents and suggestions are welcomed. A planar graph is a graph that can be embedded on a sphere or plane A plane graph is such a graph together with a choice how to embed it; its faces are the resulting regions of surface separated by edges A (face, edge, vertex etc.) coloring is just a mapping from the relevant set of items to a small set of other things traditionally given the names of colors In graph theory however there is usually an extra condition a coloring has to satisfy to be valid. Unless specified otherwise, the condition is that adjacent items must be given distinct colors two edges meeting at a vertex must have different colors, two faces with a common border must too.
BSHM: Gazetteer -- N Charles Hutton (17371823) was born in percy Street, Newcastle. percy JohnHeawood (1861-1955) was born here Biggs, Lloyd Wilson, p. 217. http://www.dcs.warwick.ac.uk/bshm/zingaz/N.html
Extractions: The British Society for the History of Mathematics HOME About BSHM BSHM Council Join BSHM ... Search Main Gazetteer A B C D ... Z Written by David Singmaster (zingmast@sbu.ac.uk ). Links to relevant external websites are being added occasionally to this gazetteer but the BSHM has no control over the availability or contents of these links. Please inform the BSHM Webster (A.Mann@gre.ac.uk) of any broken links. [When the gazetteer was edited for serial publication in the BSHM Newsletter, references were omitted since the bibliography was too substantial to be included. Publication on the web permits references to be included for material now being added to the website, but they are still absent from material originally prepared for the Newsletter - TM, August 2002] Return to the top. Dafydd Nanmor lived in the early 15th Century at Nanmor (probably Nantmor ) on the south side of Mt. Snowdon - he was a poet and "was fond of puzzles, astronomy, and grammar" [Beazley & Howell, p. 153]. Nelson, Lancashire
Biography-center - Letter H www.acmi.net.au/AIC/HEAVISIDE_BIO.html; heawood, Percywwwhistory.mcs.st-and.ac.uk/~history/Mathematicians/heawood.html http://www.biography-center.com/h.html
Extractions: random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish 740 biographies H ardy, G H
Problema Dels Quatre Colors La demostració es donà per bona durant 11 anys fins que el 1890, percy JohnHeawood féu notar un error en largumentació de Kempe i, a més, http://www.iec.es/institucio/societats/SCMatematiques/AMM/web-posters/pag_4color
Extractions: Guthriea capensis i Erica Guthriei En les coloracions a què fa referència el problema de Gurthrie, regions no frontereres es poden acolorir amb el mateix color i regions que tenen un únic punt en comú també. Amb aquestes condicions, els mapes de les figures 1(a) i 1(b) es poden acolorir amb només quatre colors, com mostren les figures 1(b) i 2 (b). A més, aquests són exemples de mapes que no es poden acolorir amb menys de quatre colors. El que resulta sorprenent és que, com afirmava Guthrie, per complicat que sigui un mapa es pugui pintar amb només quatre colors. El problema consistia en demostrar que quatre colors són suficients per a qualsevol mapa o bé en trobar-ne un que en requereixi cinc o més. La major part de demostracions errònies es basen en el convenciment que el nombre mínim de colors que cal per pintar un mapa és el màxim nombre de regions dos a dos adjacents. Després es prova que en cap mapa no hi pot haver cinc regions tals que cadascuna sigui adjacent a les altres quatre, un resultat que ja era conegut per De Morgan. La conclusió és immediata: quatre colors són suficients per a qualsevol mapa. Malauradament, la hipòtesi de partida és falsa, com prova el mapa de la figura 3. En aquest mapa el nombre màxim de regions mútuament adjacents és tres, però requereix quatre colors, tres per a les regions de la corona i un altre per a la central.
Mathematic Historic Style % % This File Is Based On A Table Of \died 1925} } \newcommand{\heawood}{{\sc heawood}\footnote{{\sc Percyheawood}, \born 1861, \died 1955} } \newcommand{\Hecht}{{\sc Hecht}\footnote{{\sc http://www.tug.org/tex-archive/macros/latex/contrib/mhs/mhs.sty
Extractions: geo home Capitolo 1 Dimostrare nella matematica pre-classica Il "teorema enorme" Il teorema dei "quattro colori" Secondo la definizione che abbiamo dato , dimostrare significa dedurre, mediante ragionamento logico basato su assiomi o teoremi precedenti, la tesi dall'ipotesi. L'idea che sta alla base di questo concetto è che un qualsiasi studioso deve poter essere in grado di seguire e rifare tutti i ragionamenti utilizzati, se conosce i "precedenti" (cioè quello che è già stato assunto o dimostrato). Ovvero: la dimostrazione è un ragionamento mediante il quale un matematico può convincere un altro matematico, che la legga, della verità di una affermazione. Questa idea di dimostrazione è essenzialmente contenuta negli Elementi Dimostrare nella matematica pre- classica All'inizio della storia della matematica è chiaro che dimostrare aveva un significato completamente diverso. Consideriamo per esempio il problema della somma degli angoli interni di un triangolo. E' abbastanza facile provare sperimentalmente che detta somma, in un triangolo equilatero, è un angolo piatto. Infatti utilizzando mattonelle con questa forma (e forse è proprio così che la "dimostrazione" fu fatta) è facile ricoprire un pavimento e in particolare si possono costruire figure come quella qui a lato. Siccome occorrono sei mattonelle triangolari per coprire tutto l'angolo giro, ciascuno degli angoli al centro deve essere un sesto dell'angolo giro: se ne deduce che la somma dei tre angoli del triangolo deve essere tre sesti di angolo giro, cioè un angolo piatto.