Geometry.Net - the online learning center
Home  - Scientists - Wiles Andrew
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 102    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Wiles Andrew:     more books (26)
  1. An Introduction to the Theory of Numbers by G. H. Hardy, Edward M. Wright, et all 2008-09-15
  2. Modular elliptic curves and Fermat's last theorem (Annals of mathematics) by Andrew Wiles, 1995
  3. Fermat's Last Theorem: Report of Conference on the Proof by Andrew J Wiles and other topics in Number Theory and Algebraic Geometry by Roy Lisker, 1995
  4. Ireland's Woes and Britain's Wiles by Andrew Gerrie, 2010-04-06
  5. Ireland's Woes And Britain's Wiles (1922) by Andrew Wyelie Gerrie, 2010-09-10
  6. Ireland's Woes And Britain's Wiles (1922) by Andrew Wyelie Gerrie, 2010-09-10
  7. Fermat's Last Theorem: An entry from Macmillan Reference USA's <i>Macmillan Reference USA Science Library: Mathematics</i> by Lucia McKay, 2002
  8. The Proof of Fermat's Last Theorem: An entry from Gale's <i>Science and Its Times</i> by Todd Timmons, 2001
  9. Descendants of Andrew and Catherine (Yetter) Dill: Morrow, Chriswisser, Yetter and Yeager and other related families by Marie Wiles, 1971
  10. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem by Simon Singh, 1997-11
  11. The parish church of St. Andrew's, Shalford [microform]: Its associations with families whose coats of arms are on the font and shields in the east window ... other families in connection with the same by Florence F Law, 1898
  12. Sex education by Ira S Wile, 1913

21. Clay Mathematics Institute - Andrew Wiles
ANDREW WILES. Andrew Wiles Inspirational Talk at the Closing Ceremony of theInternational Mathematics Olympiad. Up one level Next page Edward Witten
http://www.claymath.org/Popular_Lectures/Andrew_Wiles/
ANDREW WILES
Andrew Wiles' Inspirational Talk at the Closing Ceremony of the International Mathematics Olympiad
July 13, 2001 It?s my great pleasure to welcome the Olympiad contestants, their parents, organizers and others to the closing ceremony of this Olympiad. I'm going to address myself primarily to the contestants: the aspiring young mathematicians in what for some of you at least may be your graduation from high school mathematics. Unlike a traditional graduation, perhaps many of you will have no clear idea of what awaits you in the outside world of professional mathematics. However before I talk of the future, let me first congratulate you all. Some have arrived here by overcoming immense personal difficulties, others have arrived here overcoming only immense mathematical difficulties, but all of you have shown great talent and a real capacity for tremendous hard work. I've talked now enough in the abstract. Let me talk about one of these unsolved problems. I'm going to talk about a problem that is at least a thousand years old perhaps more. It is a part of one of the seven problems selected by the Clay Mathematics Institute as its Millennium Prize Problems For each of these, as you heard before, there is a prize of one million dollars. But I am getting ahead of myself. Let me begin with the prehistory of this problem. document.write("")

22. Andrew Wiles - Article And Reference From OnPedia.com
Andrew John Wiles (born April 11, 1953) is a British mathematician living in theUnited States. He r
http://www.onpedia.com/encyclopedia/andrew-wiles
Andrew Wiles
Andrew John Wiles (born April 11 ) is a British mathematician living in the United States . He received his Ph.D. from the University of Cambridge in and is a Professor at Princeton University . In one of the great success stories in the history of mathematics , Andrew Wiles (with help from Richard Taylor ) proved Fermat's Last Theorem in . Before this result, Andrew Wiles had done outstanding work in the number theory . In work with John Coates he obtained some of the first results on the famous Birch and Swinnerton-Dyer conjecture , and he also did important work on the main conjecture of Iwasawa theory . Fermat's Last Theorem (FLT) asserts that there are no positive integers x y , and z such that in which n is a natural number greater than 2. Wiles had been inspired by the problem as a child when he encountered it in E.T. Bell 's book, The Last Problem . His odyssey towards the final proof began in when Ken Ribet , inspired by ideas of Jean-Pierre Serre and Gerhard Frey , proved that FLT would follow from another conjecture of Taniyama Shimura and Weil , to the effect that every elliptic curve can be parametrized by modular forms . Though less familiar than Fermat's Last Theorem, the

23. MSN Encarta - Résultats De La Recherche - Wiles Andrew
wiles andrew . Articles MSN EncartaPremium. Obtenez plus de résultats pour wiles andrew
http://fr.ca.encarta.msn.com/Wiles_Andrew.html
fdbkURL="/encnet/refpages/search.aspx?q=Wiles+Andrew#bottom"; errmsg1="Please select a rating."; errmsg2="Please select a reason for your rating.";

24. DBLP: Andrew D. Wiles
Andrew D. Wiles. List of publications from the DBLP Bibliography Server FAQ 2, EE Don D. Frantz, Stefan R. Kirsch, Andrew D. Wiles Specifying 3D
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wiles:Andrew_D=.html
Andrew D. Wiles
List of publications from the DBLP Bibliography Server FAQ Coauthor Index - Ask others: ACM DL ACM Guide CiteSeer CSB ... Stefan R. Kirsch , Andrew D. Wiles: Specifying 3D Tracking System Accuracy - One Manufacturer's View. Don D. Frantz Stefan R. Kirsch Stephen Leis , Andrew D. Wiles: Accuracy assessment protocols for elektromagnetic tracking systems. CARS 2003
Coauthor Index
Don D. Frantz Stefan R. Kirsch Stephen Leis DBLP: [ Home Author Title Conferences ... Michael Ley (ley@uni-trier.de) Tue Sep 6 20:41:49 2005

25. Biografi: Andrew Wiles
Andrew Wiles er kanskje vår tids mest berømte matematiker. Han er mest kjent forå ha bevist Fermats teorem Ligningen xn + yn = zn
http://www.matematikk.org/artikkel/vis.php?id=882

26. Andrew Wiles
Andrew John Wiles. Born 11 April 1953 in Cambridge, England. Andrew Wiles firstbecame interested in Fermat s Last Theorem at the age of ten when he was
http://www.bath.ac.uk/~ma3hn/andrewwiles.html
Andrew John Wiles Born: 11 April 1953 in Cambridge, England Andrew Wiles first became interested in Fermat's Last Theorem at the age of ten when he was looking at a book on Maths in a local public library and it mentioned the theorem. He found it interesting that he, a 10 year old boy could understand the problem. So from that moment on, he began to try and solve the Theorem.
In 1974, Wiles got his BA from Merton College, Oxford. He then continued onto Clare College, Cambridge to study for his Ph.D
Near the end of 1981, he took up a post at the Institute for Advanced Study in Princeton, USA
In 1988 Wiles returned to Oxford University where he worked for a couple of years as a Royal Society Research Professor. In 1989, he was elected a Fellow of the Royal Society.

27. Solving Fermat Andrew Wiles Andrew Wiles Devoted Much Of His
Andrew Wiles spoke to NOVA and described how he came to terms with the mistake, ANDREW WILES I grew up in Cambridge in England, and my love of
http://138.238.73.126/R/fltconv.txt
Solving Fermat: Andrew Wiles Andrew Wiles devoted much of his entire career to proving Fermat's Last Theorem, the world's most famous mathematical problem. In 1993, he made front-page headlines when he announced a proof of the problem, but this was not the end of the story; an error in his calculation jeopardized his life's work. Andrew Wiles spoke to NOVA and described how he came to terms with the mistake, and eventually went on to achieve his life's ambition. NOVA: Many great scientific discoveries are the result of obsession, but in your case that obsession has held you since you were a child. ANDREW WILES: I grew up in Cambridge in England, and my love of mathematics dates from those early childhood days. I loved doing problems in school. I'd take them home and make up new ones of my own. But the best problem I ever found, I found in my local public library. I was just browsing through the section of math books and I found this one book, which was all about one particular problem Fermat's Last Theorem. This problem had been unsolved by mathematicians for 300 years. It looked so simple, and yet all the great mathematicians in history couldn't solve it. Here was a problem, that I, a ten year old, could understand and I knew from that moment that I would never let it go. I had to solve it. NOVA: Who was Fermat and what was his Last Theorem? AW: Fermat was a 17th-century mathematician who wrote a note in the margin of his book stating a particular proposition and claiming to have proved it. His proposition was about an equation which is closely related to Pythagoras' equation. Pythagoras' equation gives you: x^2 + y^2 = z2 You can ask, what are the whole number solutions to this equation, and you can see that: 3^2 + 4^2 = 5^2 and 5^2 + 12^2 = 13^2 And if you go on looking then you find more and more such solutions. Fermat then considered the cubed version of this equation: x^3 + y^3 = z^3 He raised the question: can you find solutions to the cubed equation? He claimed that there were none. In fact, he claimed that for the general family of equations: x^n + y^n = z^n where n is bigger than 2 it is impossible to find a solution. That's Fermat's Last Theorem. NOVA: So Fermat said because he could not find any solutions to this equation, then there were no solutions? AW: He did more than that. Just because we can't find a solution it doesn't mean that there isn't one. Mathematicians aren't satisfied because they know there are no solutions up to four million or four billion, they really want to know that there are no solutions up to infinity. And to do that we need a proof. Fermat said he had a proof. Unfortunately, all he ever wrote down was: "I have a truly marvelous demonstration of this proposition which this margin is too narrow to contain." NOVA: What do you mean by a proof? AW: In a mathematical proof you have a line of reasoning consisting of many, many steps, that are almost self-evident. If the proof we write down is really rigorous, then nobody can ever prove it wrong. There are proofs that date back to the Greeks that are still valid today. NOVA: So the challenge was to rediscover Fermat's proof of the Last Theorem. Why did it become so famous? AW: Well, some mathematics problems look simple, and you try them for a year or so, and then you try them for a hundred years, and it turns out that they're extremely hard to solve. There's no reason why these problems shouldn't be easy, and yet they turn out to be extremely intricate. The Last Theorem is the most beautiful example of this. NOVA: But finding a proof has no applications in the real world; it is a purely abstract question. So why have people put so much effort into finding a proof? AW: Pure mathematicians just love to try unsolved problems they love a challenge. And as time passed and no proof was found, it became a real challenge. I've read letters in the early 19th century which said that it was an embarrassment to mathematics that the Last Theorem had not been solved. And of course, it's very special because Fermat said that he had a proof. NOVA: How did you begin looking for the proof? AW: In my early teens I tried to tackle the problem as I thought Fermat might have tried it. I reckoned that he wouldn't have known much more math than I knew as a teenager. Then when I reached college, I realized that many people had thought about the problem during the 18th and 19th centuries and so I studied those methods. But I still wasn't getting anywhere. Then when I became a researcher, I decided that I should put the problem aside. It's not that I forgot about it it was always there but I realized that the only techniques we had to tackle it had been around for 130 years. It didn't seem that these techniques were really getting to the root of the problem. The problem with working on Fermat was that you could spend years getting nowhere. It's fine to work on any problem, so long as it generates interesting mathematics along the way even if you don't solve it at the end of the day. The definition of a good mathematical problem is the mathematics it generates rather than the problem itself. NOVA: It seems that the Last Theorem was considered impossible, and that mathematicians could not risk wasting getting nowhere. But then in 1986 everything changed. A breakthrough by Ken Ribet at the University of California at Berkeley linked Fermat's Last Theorem to another unsolved problem, the Taniyama-Shimura conjecture. Can you remember how you reacted to this news? AW: It was one evening at the end of the summer of 1986 when I was sipping iced tea at the house of a friend. Casually in the middle of a conversation this friend told me that Ken Ribet had proved a link between Taniyama-Shimura and Fermat's Last Theorem. I was electrified. I knew that moment that the course of my life was changing because this meant that to prove Fermat's Last Theorem all I had to do was to prove the Taniyama-Shimura conjecture. It meant that my childhood dream was now a respectable thing to work on. I just knew that I could never let that go. NOVA: So, because Taniyama-Shimura was a modern problem, this meant that working on it, and by implication trying to prove Fermat's Last Theorem, was respectable. AW: Yes. Nobody had any idea how to approach Taniyama-Shimura but at least it was mainstream mathematics. I could try and prove results, which, even if they didn't get the whole thing, would be worthwhile mathematics. So the romance of Fermat, which had held me all my life, was now combined with a problem that was professionally acceptable. NOVA: At this point you decided to work in complete isolation. You told nobody that you were embarking on a proof of Fermat's Last Theorem. Why was that? AW: I realized that anything to do with Fermat's Last Theorem generates too much interest. You can't really focus yourself for years unless you have undivided concentration, which too many spectators would have destroyed. NOVA: But presumably you told your wife what you were doing? AW: My wife's only known me while I've been working on Fermat. I told her on our honeymoon, just a few days after we got married. My wife had heard of Fermat's Last Theorem, but at that time she had no idea of the romantic significance it had for mathematicians, that it had been such a thorn in our flesh for so many years. NOVA: On a day-to-day basis, how did you go about constructing your proof? AW: I used to come up to my study, and start trying to find patterns. I tried doing calculations which explain some little piece of mathematics. I tried to fit it in with some previous broad conceptual understanding of some part of mathematics that would clarify the particular problem I was thinking about. Sometimes that would involve going and looking it up in a book to see how it's done there. Sometimes it was a question of modifying things a bit, doing a little extra calculation. And sometimes I realized that nothing that had ever been done before was any use at all. Then I just had to find something completely new; it's a mystery where that comes from. I carried this problem around in my head basically the whole time. I would wake up with it first thing in the morning, I would be thinking about it all day, and I would be thinking about it when I went to sleep. Without distraction, I would have the same thing going round and round in my mind. The only way I could relax was when I was with my children. Young children simply aren't interested in Fermat. They just want to hear a story and they're not going to let you do anything else. NOVA: Usually people work in groups and use each other for support. What did you do when you hit a brick wall? AW: When I got stuck and I didn't know what to do next, I would go out for a walk. I'd often walk down by the lake. Walking has a very good effect in that you're in this state of relaxation, but at the same time you're allowing the sub-conscious to work on you. And often if you have one particular thing buzzing in your mind then you don't need anything to write with or any desk. I'd always have a pencil and paper ready and, if I really had an idea, I'd sit down at a bench and I'd start scribbling away. NOVA: So for seven years you're pursuing this proof. Presumably there are periods of self-doubt mixed with the periods of success. AW: Perhaps I can best describe my experience of doing mathematics in terms of a journey through a dark unexplored mansion. You enter the first room of the mansion and it's completely dark. You stumble around bumping into the furniture, but gradually you learn where each piece of furniture is. Finally, after six months or so, you find the light switch, you turn it on, and suddenly it's all illuminated. You can see exactly where you were. Then you move into the next room and spend another six months in the dark. So each of these breakthroughs, while sometimes they're momentary, sometimes over a period of a day or two, they are the culmination of and couldn't exist without the many months of stumbling around in the dark that proceed them. NOVA: And during those seven years, you could never be sure of achieving a complete proof. AW: I really believed that I was on the right track, but that did not mean that I would necessarily reach my goal. It could be that the methods needed to take the next step may simply be beyond present day mathematics. Perhaps the methods I needed to complete the proof would not be invented for a hundred years. So even if I was on the right track, I could be living in the wrong century. NOVA: Then eventually in 1993, you made the crucial breakthrough. AW: Yes, it was one morning in late May. My wife, Nada, was out with the children and I was sitting at my desk thinking about the last stage of the proof. I was casually looking at a research paper and there was one sentence that just caught my attention. It mentioned a 19th-century construction, and I suddenly realized that I should be able to use that to complete the proof. I went on into the afternoon and I forgot to go down for lunch, and by about three or four o'clock, I was really convinced that this would solve the last remaining problem. It got to about tea time and I went downstairs and Nada was very surprised that I'd arrived so late. Then I told her I'd solved Fermat's Last Theorem. NOVA: The New York Times exclaimed "At Last Shout of 'Eureka!' in Age-Old Math Mystery," but unknown to them, and to you, there was an error in your proof. What was the error? AW: It was an error in a crucial part of the argument, but it was something so subtle that I'd missed it completely until that point. The error is so abstract that it can't really be described in simple terms. Even explaining it to a mathematician would require the mathematician to spend two or three months studying that part of the manuscript in great detail. NOVA: Eventually, after a year of work, and after inviting the Cambridge mathematician Richard Taylor to work with you on the error, you managed to repair the proof. The question that everybody asks is this; is your proof the same as Fermat's? AW: There's no chance of that. Fermat couldn't possibly have had this proof. It's 150 pages long. It's a 20th-century proof. It couldn't have been done in the 19th century, let alone the 17th century. The techniques used in this proof just weren't around in Fermat's time. NOVA: So Fermat's original proof is still out there somewhere. AW: I don't believe Fermat had a proof. I think he fooled himself into thinking he had a proof. But what has made this problem special for amateurs is that there's a tiny possibility that there does exist an elegant 17th-century proof. NOVA: So some mathematicians might continue to look for the original proof. What will you do next? AW: There's no problem that will mean the same to me. Fermat was my childhood passion. There's nothing to replace it. I'll try other problems. I'm sure that some of them will be very hard and I'll have a sense of achievement again, but nothing will mean the same to me. There's no other problem in mathematics that could hold me the way that this one did. There is a sense of melancholy. We've lost something that's been with us for so long, and something that drew a lot of us into mathematics. But perhaps that's always the way with math problems, and we just have to find new ones to capture our attention. People have told me I've taken away their problem can't I give them something else? I feel some sense of responsibility. I hope that seeing the excitement of solving this problem will make young mathematicians realize that there are lots and lots of other problems in mathematics which are going to be just as challenging in the future. NOVA: What is the main challenge now? AW: The greatest problem for mathematicians now is probably the Riemann Hypothesis. But it's not a problem that can be simply stated. NOVA: And is there any one particular thought that remains with you now that Fermat's Last Theorem has been laid to rest? AW: Certainly one thing that I've learned is that it is important to pick a problem based on how much you care about it. However impenetrable it seems, if you don't try it, then you can never do it. Always try the problem that matters most to you. I had this rare privilege of being able to pursue in my adult life, what had been my childhood dream. I know it's a rare privilege, but if one can really tackle something in adult life that means that much to you, then it's more rewarding than anything I can imagine. NOVA: And now that journey is over, there must be a certain sadness? AW: There is a certain sense of sadness, but at the same time there is this tremendous sense of achievement. There's also a sense of freedom. I was so obsessed by this problem that I was thinking about it all the time when I woke up in the morning, when I went to sleep at night and that went on for eight years. That's a long time to think about one thing. That particular odyssey is now over. My mind is now at rest.

28. Andrew Wiles - Wikipedia

http://es.wikipedia.org/wiki/Andrew_Wiles
Andrew Wiles
De Wikipedia, la enciclopedia libre.
Andrew John Wiles Cambridge Inglaterra 11 de abril de - ) es un matem¡tico . Alcanz³ fama mundial en por demostrar el famoso ºltimo teorema de Fermat En el a±o 1995 el matem¡tico Andrew Wiles, en un art­culo de 98 p¡ginas publicado en Annals of mathematics (1995), consigui³ demostrar el teorema mediante curvas el­pticas. (Wiles, Andrew. Modular elliptic curves and Fermat's last theorem . Ann. of Math. (2) 141 (1995), no. 3, 443551.) Al mismo tiempo tambi©n demostr³ como cierta la conjetura de Taniyama Shimura donde todas las ecuaciones el­pticas son modulares. Obtenido de " http://es.wikipedia.org/wiki/Andrew_Wiles Categor­as Matem¡ticos del Reino Unido Views Personal tools Navegaci³n Buscar Herramientas Otros idiomas

29. NOVA Online | The Proof
NOVA Online presents The Proof, including an interview with andrew wiles, an essay on Sophie Germain, and the Pythagorean theorem.
http://www.pbs.org/wgbh/nova/proof/
For over 350 years, some of the greatest minds of science struggled to prove what was known as Fermat's Last Theorem the idea that a certain simple equation had no solutions. Now hear from the man who spent seven years of his life cracking the problem, read the intriguing story of an 18th century woman mathematician who hid her identity in order to work on Fermat's Last Theorem, and demonstrate that a related equation, the Pythagorean Theorem, is true.
Text
Proof Home Andrew Wiles ... To print
NOVA Online is produced for PBS by the WGBH Science Unit

30. National Academy Of Sciences - Members
wiles, andrew J. Princeton University. wiles introduced fundamental new ideas inalgebraic number theory, in the theory of elliptic curves and modular forms
http://www4.nationalacademies.org/nas/naspub.nsf/(urllinks)/NAS-58N44U?opendocum

31. Wiles, Andrew John --  Encyclopædia Britannica
wiles, andrew John British mathematician who proved Fermat s last theorem; inrecognition he was awarded a special silver plaque—he was beyond the
http://www.britannica.com/eb/article-9090319
Home Browse Newsletters Store ... Subscribe Already a member? Log in Content Related to this Topic This Article's Table of Contents Andrew John Wiles Print this Table of Contents Shopping Price: USD $1495 Revised, updated, and still unrivaled. The Official Scrabble Players Dictionary (Hardcover) Price: USD $15.95 The Scrabble player's bible on sale! Save 30%. Merriam-Webster's Collegiate Dictionary Price: USD $19.95 Save big on America's best-selling dictionary. Discounted 38%! More Britannica products Wiles, Andrew John
 Encyclopædia Britannica Article Page 1 of 1
Andrew John Wiles
born April 11, 1953, Cambridge, Eng.
British mathematician who proved Fermat's last theorem
Wiles, Andrew John... (75 of 423 words) var mm = [["Jan.","January"],["Feb.","February"],["Mar.","March"],["Apr.","April"],["May","May"],["June","June"],["July","July"],["Aug.","August"],["Sept.","September"],["Oct.","October"],["Nov.","November"],["Dec.","December"]]; To cite this page: MLA style: "Wiles, Andrew John."

32. Richard Taylor's Home Page
Publications including the joint paper with andrew wiles which completed the proof of Fermat's Last Theorem.
http://www.math.harvard.edu/~rtaylor/
R I C H A R D T A Y L O R
Here are some recent papers. They are available either as dvi or as postscript files. They may be very slightly different from the published versions, e.g. they may not include corrections made to the proofs.
Ihara's lemma and potential automorphy.
M.Harris, N.Shepherd-Barron and R.Taylor
preprint. dvi Postscript Automorphy for some l-adic lifts of automorphic mod l representations.
L.Clozel, M.Harris and R.Taylor
preprint. dvi Postscript Compatibility of local and global Langlands correspondences.
R.Taylor and T.Yoshida
preprint. dvi Postscript Galois representations. (Review article.)
R.Taylor
Proceedings of ICM 2002, volume I, 449-474. dvi Postscript Galois representations. (Long version of above review article.) R.Taylor Annales de la Faculte des Sciences de Toulouse 13 (2004), 73-119. dvi Postscript Galois representations. R.Taylor slides for talk at ICM 2002. dvi Postscript On the meromorphic continuation of degree two L-functions. R.Taylor

33. Wiles, Andrew --  Britannica Student Encyclopedia
wiles, andrew (born 1953), English mathematician. In June 1993 in England, at asmall conference of mathematicians at the Isaac Newton Institute, Cambridge,
http://www.britannica.com/ebi/article?tocId=9314205

34. Karl Rubin
Slides for a talk by Karl Rubin on the story of Fermat's Last Theorem for a general audience, including the history of the problem, the story of andrew wiles' solution and the excitement surrounding it, and some of the many ideas used in his proof.
http://math.Stanford.EDU/~rubin/lectures/fermatslides/

35. Clay Mathematics Institute
A Clay Mathematics Institute Prize problem, with description by andrew wiles PDF and lecture by Fernando RodriguezVillegas .ram.
http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/
Clay Mathematics Institute
Dedicated to increasing and disseminating mathematical knowledge
HOME ABOUT CMI PROGRAMS AWARDS ... PUBLICATIONS
Birch and Swinnerton-Dyer Conjecture
Mathematicians have always been fascinated by the problem of describing all solutions in whole numbers x,y,z to algebraic equations like x + y = z
Return to top
Contact Search Clay Mathematics Institute

36. Fermat's Last Theorem: Definition And Much More From Answers.com
andrew wiles and Richard Taylor were able to establish a special case of In the words of andrew wiles, it s impossible; this is a 20th century proof .
http://www.answers.com/topic/fermat-s-last-theorem
showHide_TellMeAbout2('false'); Business Entertainment Games Health ... More... On this page: Dictionary Wikipedia Best of Web Mentioned In Or search: - The Web - Images - News - Blogs - Shopping Fermat's last theorem Dictionary Fer·mat's last theorem fĕr-m¤z
n. The theorem that the equation a n b n c n has no solutions in positive integers a, b, c if n is an integer greater than 2. It was stated as a marginal note by Pierre de Fermat around 1630 and not proved until 1994 by the British mathematician Andrew Wiles (born 1953).
Wikipedia
Fermat's last theorem Pierre de Fermat Fermat's last theorem (sometimes abbreviated as FLT and also called Fermat's great theorem ) is one of the most famous theorems in the history of mathematics . It states that:
There are no positive integers x y , and z such that in which n is a natural number greater than 2.
The 17th-century mathematician Pierre de Fermat wrote about this in in his copy of Claude-Gaspar Bachet 's translation of the famous Arithmetica of Diophantus : "I have discovered a truly remarkable proof of this theorem that the margin of this page is too small to contain". (Original

37. Fermat Corner
Fermat's Last Theorem by Simon Singh. Discusses the early and recent history of people trying to solve this perplexing problem, including andrew wiles' final success. Includes information about poems, limericks, the offBroadway show and a quiz.
http://www.simonsingh.net/Fermat_Corner.html

38. Allmath.com - Math Site For Kids! Home Of Flashcards, Math
wiles, andrew (John). (1953). Mathematician, born in Cambridge, Cambridgeshire,EC England, UK. He studied at Clare College, Cambridge,
http://www.allmath.com/biosearch.php?QMeth=ID&ID=37039

39. Wiles, Andrew In UK Directory: Library: Mathematicians
wiles, andrew Get background on the contributions of English mathematician andrewwiles to the discipline.
http://www.ukdirectory.co.uk/Library/Category10038304.html
Web Search:
Wiles, Andrew
Get background on the contributions of English mathematician Andrew Wiles to the discipline.
You are here: UK Directory Library Science Mathematicians ... Wiles, Andrew Search Results About 1. Parentscentre - Maths
Parentscentre is an official Department for Education and Skills (DfES) Web site for parents and carers. We aim to act as a reference book about education.
www.parentscentre.gov.uk 2. Buy "Mathematics" Books on eBay.co.uk
You'll find anything from leather-bound first editions to new paperbacks and magazine back issues at fantastic prices on the UK's online marketplace. Buy it. Sell it. Love it. eBay.co.uk.
www.ebay.co.uk 3. Maths Courses at the Guardian
Find maths courses at The Guardian. Get courses e-mailed to you with Jobmatch - the free e-mail notification service.
www.guardian.co.uk/jobs Selected sites from UK Directory Listing page of 4. Wiles, Andrew - IMU Silver Plaque
Describes how Princeton math professor Andrew Wiles was awarded the International Mathematics Union's Silver Plaque for proving Fermat's theorem.
www.ams.org

40. Wiles
Biography of andrew wiles (19530BC) andrew wiles s interest in Fermat s LastTheorem began at a young age. He said- I was a ten year old and one
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Wiles.html
Andrew John Wiles
Born: 11 April 1953 in Cambridge, England
Click the picture above
to see three larger pictures Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Version for printing
Andrew Wiles 's interest in Fermat's Last Theorem began at a young age. He said:- ... I was a ten year old and one day I happened to be looking in my local public library and I found a book on maths and it told a bit about the history of this problem and I, a ten year old, could understand it. From that moment I tried to solve it myself, it was such a challenge, such a beautiful problem, this problem was Fermat's Last Theorem. In 1971, Wiles entered Merton College, Oxford, graduating with a B.A. in 1974. He then entered Clare College, Cambridge to study for his doctorate. His Ph.D. supervisor at Cambridge was John Coates who said:- I have been very fortunate to have had Andrew as a student. Even as a research student he was a wonderful person to work with, he had very deep ideas then and it was always clear he was a mathematician who would do great things. Wiles did not work on Fermat's Last Theorem for his doctorate. He said:-

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 2     21-40 of 102    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

free hit counter