Geometry.Net - the online learning center
Home  - Scientists - Wantzel Pierre
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 88    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Wantzel Pierre:     more detail

41. Les trois problèmes de l'Antiquité -- Page VINET
2 n’est pas C’est également pierre-Laurent wantzel qui démontra en 1837
http://www.col-camus-soufflenheim.ac-strasbourg.fr/Page.php?IDP=587&IDD=0

42. Página De Matematicos De Todos Los Tiempos
Translate this page VARIGNON, pierre. VIETE, FRANÇOIS. VOLTERRA, VITO. W. WALLIS, JOHN. wantzel, pierre.WEIERSTRASS. WESSEL, CASPAR. WIENER, NORBERT. WILES, ANDREW. WITTGENSTEIN,
http://www.bnm.mcye.gov.ar/bnmdigital/matematicas/matematicos.htm

43. History Of Mathematics. Notes.
Angle trisection was shown to be impossible in 1837 by pierre wantzel. He showedthat you can t construct a 20 degree angle (but you can construct a 60
http://www.math.fau.edu/Richman/History/notes.htm
MHF 3404, Notes
  • 21 August
    We'll start with the ancient Greeks. The history of mathematics is a vast subject so we have to be selective. The ancient Greeks are the first modern mathematicians. In any event, that's how we trace our lineage.
    Euclid lived in Alexandria around 300 B.C. Not the one in Virginia, the one in Egypt. What's a Greek city doing in Egypt? Alexander the Great (356-323 B.C.) conquered a lot of territory. Alexandria is named after him.
    Euclid wrote The Elements . Mostly we think of him in connection with geometry, but there is a lot of number theory in The Elements also: the Euclidean algorithm, the infinitude of the primes, perfect numbers, and so on.
    There are two things that stand out to me in the geometry of Euclid: the notion of proof and the notion of construction (or algorithm). A proof is an argument that something is true. Euclid required that proofs start from things that were accepted as true and proceed step by step to the thing being proved. The accepted things are called axioms or postulates; the steps are called deductions. Of course the logic underlying the deductions has to be accepted also.
    Two of Euclid's postulates for geometry were
    • Postulate 4 . All right angles are equal.
    • Postulate 5 . If a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which the angles are less than two right angles.

44. Subject Wahoo War Round 13 (fwd) Date Sun, 4 May 1997 1246
Answer pierre Laurent wantzel 10. Identify the following concerning an educationalnovel for the stated number of points. 1. 10 points This influential
http://quizbowl.stanford.edu/archive/wahoo97/Wahoo War -- Round 13 (fwd)
Subject: Wahoo War Round 13 (fwd) Date: Sun, 4 May 1997 12:46:25 -0700 (PDT) From: Gaius Stern To: David Matthew Levinson Forwarded message Date: Wed, 26 Mar 1997 22:10:29 -0500 (EST) From: Andrew Yaphe To: peterf@hydro.la.asu.edu Subject: Wahoo War Round 13 (fwd) Resent-Date: Fri, 2 May 1997 16:44:51 -0400 (EDT) Resent-From: Andrew Yaphe

45. American Mathematical Monthly, The: Constructions Using A Compass And Twice-notc
They suspected that neither problem was plane, a fact that was finally establishedby pierre L. wantzel (18141848) in 1837 (though some have argued that
http://www.findarticles.com/p/articles/mi_qa3742/is_200202/ai_n9032869
@import url(/css/us/style1.css); @import url(/css/us/searchResult1.css); @import url(/css/us/articles.css); @import url(/css/us/artHome1.css); Advanced Search Home Help
IN free articles only all articles this publication Automotive Sports 10,000,000 articles - not found on any other search engine. FindArticles American Mathematical Monthly, The Feb 2002
Content provided in partnership with
10,000,000 articles Not found on any other search engine. Featured Titles for
ASA News
ASEE Prism Academe African American Review ... View all titles in this topic Hot New Articles by Topic Automotive Sports Top Articles Ever by Topic Automotive Sports Constructions using a compass and twice-notched straightedge American Mathematical Monthly, The Feb 2002 by Baragar, Arthur
Save a personal copy of this article and quickly find it again with Furl.net. It's free! Save it. 1. INTRODUCTION. It is impossible to trisect an arbitrary angle. So mathematicians have claimed, with confidence, for more than 160 years. The statement is provocative. To a mathematician, the statement embodies the beauty of algebra and its applications to geometry, hints at Galois theory, and is a rare example of a statement of the nonexistence of a solution. To recreational mathematicians, it is often thought of as a challenge. Every year, mathematicians around the world receive letters from the general population making claims to the contrary. Their solutions fall into two main categories: they either are false or do not adhere to the rules of constructions.

46. Pronunciation Guide For Mathematics
pierre Laurent wantzel 181448. Edward Waring 1734-98. Waukesha waw kee shaw.Wilhelm Weber 1804-91 vay buhr. Daniel Webster 1782-1852
http://waukesha.uwc.edu/mat/kkromare/up.html
Mathematics Pronunciation Guide
A Megametamathematical Guide, for the Diacritally Challenged, of the Proper American English Pronunciation of Terms and Names This guide includes most mathematicians and mathematical terms that may been encountered in high school and the first two years of college. Proper names are generally pronounced as in the original language.
Some entries are obscure and may be useful only in a game of mathematical trivia, e. g. d'Alembert's
mother, the name of the line in a fraction, or who shot Galois.
I have not had the time to include most definitions or accomplishments. The curious person may try searching the internet for such information. However I have given a few, they are indicated with Move the curser to the symbol and wait a second.
D ates include B.C. or A.D. only if the choice is not obvious from the context.
The Guide is not complete, I will be adding more pronunciations and entries as time permits. (I did not give up my day job.) (The red dates and purple pronunciations are not links.)

47. Euclid Challenge - Trisection Of Any Angle By Straightedge And Compass
pierre wantzel proved during the 19th century that it was impossible to trisectall angles by straightedge and compass, when following the “Traditional
http://www.euclidchallenge.org/pg_03.htm

48. Le Nombre Pi - Mathématique - A525G
pierre wantzel en 1837.
http://www.a525g.com/mathematiques/nombre-pi.php
sciences
A525G est un portail collaboratif de partage de la connaissance. sciences mathématiques À propos de A525G
Participez!
...
Commentaires

Autres articles... Notions de base sur les fonctions Mathématique - statistiques - moindres carrés Nombre imaginaire et nombres complexes Le fascinant nombre Pi ...
Immobilier - À vendre du proprio

Message à tous les lecteurs Écrivez un ou des articles pour ce site. Aidez moi à réaliser une grande encyclopédie accessible à tous! Imaginez chaque personne francophone écrivant un seul article informatif. C’est un mine d’information que nous pouvons créer ensemble. J’ai un article et je veux le publier sur votre site «Notez que vous pourrez publier votre article sous licence Libre [Creative Commons]»
Le fascinant nombre Pi
Histoire - Première définition
Pi est défini comme étant le rapport constant entre la circonférence et le diamètre d'un cercle. Remarque : Il a déjà fallu un certain temps à l'homme pour trouver que ce rapport est constant..., et donc pour découvrir l'existence de PI. A l'origine, ce rapport est noté P. C'est Euler qui utilisa la notation de la seizième lettre de l'alphabet grec, notation gardée par la suite vue l'importance de ses travaux. Ainsi, pour tout cercle de périmètre p, de diamètre D (de rayon R)

49. Disquettes D'installation.
wantzel@wanadoo.fr ; Date Thu, 09 Nov 2000 193929+0000 Merci d avance. pierre-Laurent wantzel.
http://lists.debian.org/debian-french/2000/11/msg00325.html
Date Prev Date Next Thread Prev Thread Next ... Thread Index
Disquettes d'installation.
Reply to:

50. The Quadratrix
During the 19th century the French mathematician pierre wantzel proved that underthese circumstances the first two of those constructions are impossible
http://cage.rug.ac.be/~hs/quadratrix/quadratrix.html
THE QUADRATRIX
Trisecting an angle - Squaring the circle Introduction
Three famous geometrical construction problems, originating from ancient Greek mathematics occupied many mathematicians until modern times. These problems are
  • the duplication of the cube:
    construct (the edge of) a cube whose volume is double the volume of a given cube,
  • angle trisection:
    construct an angle that equals one third of a given angle,
  • the squaring of a circle:
    given (the radius of) a circle, construct (the side of) a square whose area equals the area of the circle.
In the ancient Greek tradition the only tools that are available for these constructions are a ruler and a compass . During the 19th century the French mathematician Pierre Wantzel proved that under these circumstances the first two of those constructions are impossible and for the squaring of the circle it lasted until 1882 before a proof had been given by Ferdinand von Lindemann
If we extend the range of tools the problems can be solved. New tools can be material tools (ex. a "marked ruler", that's a ruler with two marks on it, a "double ruler", that's a ruler with two parallel sides,...), or

51. History Of Mathematics: Chronology Of Mathematicians
pierre Laurent wantzel (18141848); Eugène Charles Catalan (1814-1894);Ludwig Schläfli (1814-1895) *MT; James Joseph Sylvester (1814-1897) *MT
http://aleph0.clarku.edu/~djoyce/mathhist/chronology.html
Chronological List of Mathematicians
Note: there are also a chronological lists of mathematical works and mathematics for China , and chronological lists of mathematicians for the Arabic sphere Europe Greece India , and Japan
Table of Contents
1700 B.C.E. 100 B.C.E. 1 C.E. To return to this table of contents from below, just click on the years that appear in the headers. Footnotes (*MT, *MT, *RB, *W, *SB) are explained below
List of Mathematicians
    1700 B.C.E.
  • Ahmes (c. 1650 B.C.E.) *MT
    700 B.C.E.
  • Baudhayana (c. 700)
    600 B.C.E.
  • Thales of Miletus (c. 630-c 550) *MT
  • Apastamba (c. 600)
  • Anaximander of Miletus (c. 610-c. 547) *SB
  • Pythagoras of Samos (c. 570-c. 490) *SB *MT
  • Anaximenes of Miletus (fl. 546) *SB
  • Cleostratus of Tenedos (c. 520)
    500 B.C.E.
  • Katyayana (c. 500)
  • Nabu-rimanni (c. 490)
  • Kidinu (c. 480)
  • Anaxagoras of Clazomenae (c. 500-c. 428) *SB *MT
  • Zeno of Elea (c. 490-c. 430) *MT
  • Antiphon of Rhamnos (the Sophist) (c. 480-411) *SB *MT
  • Oenopides of Chios (c. 450?) *SB
  • Leucippus (c. 450) *SB *MT
  • Hippocrates of Chios (fl. c. 440) *SB
  • Meton (c. 430) *SB

52. Encyclopedia: Gauss-Wantzel Theorem
Gauss conjectured that this condition was also necessary, but he offered no proofof this fact, which was proved by pierre wantzel in (1836).
http://www.nationmaster.com/encyclopedia/Gauss_Wantzel-theorem

Supporter Benefits
Signup Login Sources ... Pies
Related Articles People who viewed "Gauss-Wantzel theorem" also viewed:
  • Constructible polygon
  • Ruler_and_compass construction
  • Ruler and compass constructions
  • Gaussian period ...
  • Coprime What's new?
  • Our next offering Latest newsletter Student area Lesson plans
  • Recent Updates
  • Zeedonk Yorkshire Terrier Yap Eng Hoe Yanaboo ...
  • More Recent Articles Top Graphs
  • Richest Most Murderous Most Taxed Most Populous ...
  • More Stats
    Encyclopedia: Gauss-Wantzel theorem
    Updated 210 days 6 hours 41 minutes ago. Other descriptions of Gauss-Wantzel theorem In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge . For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. Contents 1 Conditions for constructibility
    2 General theory

    3 Detailed results in terms of Fermat primes

    4 Compass-and-straightedge constructions
    ...
    7 External links
    Conditions for constructibility
    Some regular polygons are easy to construct with compass and straightedge; others are not. This led to the question being posed: is it possible to construct all regular n -gons with compass and straightedge? If not, which

    53. Encyclopedia: Constructible Polygon
    no proof of this fact, which was proved by pierre wantzel in (1836). wantzel s result comes down to a calculation showing that f(n) is a power of 2
    http://www.nationmaster.com/encyclopedia/Constructible-polygon

    Supporter Benefits
    Signup Login Sources ... Pies
    Related Articles People who viewed "Constructible polygon" also viewed:
  • Gauss_Wantzel theorem
  • Straightedge and compass
  • Constructible
  • Regular polygon ...
  • Symmetry group What's new?
  • Our next offering Latest newsletter Student area Lesson plans
  • Recent Updates
  • Zeedonk Yorkshire Terrier Yap Eng Hoe Yanaboo ...
  • More Recent Articles Top Graphs
  • Richest Most Murderous Most Taxed Most Populous ...
  • More Stats
    Encyclopedia: Constructible polygon
    Updated 30 days 8 hours 48 minutes ago. Other descriptions of Constructible polygon In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge . For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. A polygon (from the Greek poly, for many, and gonos, for angle) is a closed planar path composed of a finite number of sequential straight line segments. ... A number of ancient problems in geometry involve the construction of lengths or angles using only an idealized ruler and compass, or more properly a straightedge and compass. ... In geometry, a pentagon is any five-sided polygon. ...

    54. Tangram
    Two thousand years later, in 1837, pierre Laurent wantzel showed, by an algebraicprocess, that there are angles that can t be trisected with rule and
    http://www.univ.trieste.it/~nirtv/tanweb/texten.html
    Video
    (Intranet)
    Video
    (Intranet)
    You need:
    Windows Media Player 6.2
    References
    Pictures

    Home

    Links
  • Play Tangram on line Tangram for Mac Tangram for Windows World Mathematical Year 2000 ... [Conclusion] Text of the video:
    WHAT ARE WE PLAYING:
    TANGRAM OR MATH?
    C.Pellegrino - L.Zuccheri 1. What is Tangram?
    Tangram is an antique game that originally comes from China. It is formed by dividing a square into seven parts that are called "tan": a square, a parallelogram and five isosceles right-angled triangles, two big ones, a medium and two little ones. The traditional rules of the game are simple: you have to lay the seven tans on a plane, without overlapping them, trying to form a figure that reproduces, maintaining the proportions, the figures that you have seen earlier in the instruction book. It may appear very easy to play the game Tangram, especially if you see the pieces already assembled in a square, but normally a beginner has already difficulties to reform the square, after having taken the pieces out of the box. But Tangram isn't a puzzle as many others. After having played a little bit, you begin to enjoy the subtle elegance with which the square has been divided.
  • 55. Tangram
    Translate this page Solo dopo più di duemila anni, nel 1837, pierre Laurent wantzel dimostrò, con unprocedimento algebrico, che esistono angoli che non possono essere
    http://www.univ.trieste.it/~nirtv/tanweb/textit.html
    Filmato
    (Intranet)
    Filmato
    (Intranet)
    E' necessario alla visione:
    Windows Media Player 6.2
    Bibliografia
    Immagini

    Home

    Altri Siti
  • per giocare al Tangram in linea per scaricare una versione del Tangram per Mac per scaricare una versione Window del Tangram per informazioni sull'Anno Internazionale della Matematica ... [Conclusione] Testo del video:
    A CHE GIOCO GIOCHIAMO:
    TANGRAM O MATEMATICA?
    C.Pellegrino - L.Zuccheri
    Il tangram è un antico gioco di origine cinese, ottenuto scomponendo un quadrato in sette parti dette tan: un quadrato, un romboide, e cinque triangoli rettangoli isosceli, di cui due grandi, uno medio e due piccoli . Le regole tradizionali del gioco sono semplici: si tratta di disporre sul piano, evitando sovrapposizioni, tutti i sette tan in modo da formare figure che riproducano, rispettando le proporzioni, quelle riportate in formato ridotto sui libretti che accompagnano il gioco. Giocare con il tangram può sembrare facile, troppo facile, soprattutto quando lo si vede già assemblato sotto forma di quadrato: normalmente però un principiante trova già difficoltà a comporre il quadrato, una volta tolti i pezzi dalla scatola.
  • 56. Lebensdaten Von Mathematikern
    Translate this page wantzel, pierre (1814 - 1848) Waring, Edward (1734 - 15.8.1798) Watson, George (1886 -1965) Watson, Henry (1827 - 1903) Weber, Heinrich Martin (5.5.1842
    http://www.mathe.tu-freiberg.de/~hebisch/cafe/lebensdaten.html
    Diese Seite ist dem Andenken meines Vaters Otto Hebisch (1917 - 1998) gewidmet. By our fathers and their fathers
    in some old and distant town
    from places no one here remembers
    come the things we've handed down.
    Marc Cohn Dies ist eine Sammlung, die aus verschiedenen Quellen stammt, u. a. aus Jean Dieudonne, Geschichte der Mathematik, 1700 - 1900, VEB Deutscher Verlag der Wissenschaften, Berlin 1985. Helmut Gericke, Mathematik in Antike und Orient - Mathematik im Abendland, Fourier Verlag, Wiesbaden 1992. Otto Toeplitz, Die Entwicklung der Infinitesimalrechnung, Springer, Berlin 1949. MacTutor History of Mathematics archive A B C ... Z Abbe, Ernst (1840 - 1909)
    Abel, Niels Henrik (5.8.1802 - 6.4.1829)
    Abraham bar Hiyya (1070 - 1130)
    Abraham, Max (1875 - 1922)
    Abu Kamil, Shuja (um 850 - um 930)
    Abu'l-Wafa al'Buzjani (940 - 998)
    Ackermann, Wilhelm (1896 - 1962) Adams, John Couch (5.6.1819 - 21.1.1892) Adams, John Frank (5.11.1930 - 7.1.1989) Adelard von Bath (1075 - 1160) Adler, August (1863 - 1923) Adrain, Robert (1775 - 1843)

    57. Vinkelns Tredelning Och Andra Geometriska Konstruktionsproblem
    men det dröjde ända till 1837 innan fransmannen pierre wantzel bevisade att Gauss och wantzel bevisade senare att den regelbundna nhörningen kan
    http://www.matematik.su.se/gemensamt/Arkimedes.html
    Matematiska institutionen
    Stockholms universitet
    Vinkelns tredelning och andra geometriska konstruktionsproblem och cirkelns kvadratur. lika delar, konstruerar en kvadrat deliska problemet inte k p ...p r, i m m Skrivet av den 31 oktober 2000.

    58. Vinkelns Tredelning Och Andra Geometriska Konstruktionsproblem
    men det dröjde ända till 1837 innan fransmannen pierre wantzel bevisade att Gauss och wantzel bevisade senare att den regelbundna nhörningen kan
    http://www.matematik.su.se/matematik/exempel/geometri/Arkimedes.html
    Vinkelns tredelning och andra geometriska konstruktionsproblem
    och cirkelns kvadratur. lika delar, konstruerar en kvadrat deliska problemet Arkimedes tredelning av en vinkel. En vinkel v (dvs AOB O . En linje genom B C och OA D CD DCO likbent (eftersom CD och CO x y DOC och DOB ger y=2x och v=x+y=3x C och D C och D B D OA (och C mellan B och D C Pierre Wantzel Ferdinand von Lindemann inte Euklides AB A och B och samma radie AB . Om C ABC AB Carl Friedrich Gauss fann 1796 en konstruktion av den regelbundna n k p ...p r, p i m m samt Arkimedes och

    59. Full Alphabetical Index
    Translate this page wantzel, pierre (1020) Waring, Edward (237*) Watson, GN (171*) Watson, Henry (404*)Wazewski, Tadeusz (759*) Weatherburn, Charles (506*)
    http://alas.matf.bg.ac.yu/~mm97106/math/alphalist.htm
    Full Alphabetical Index
    The number of words in the biography is given in brackets. A * indicates that there is a portrait.
    A
    Abbe , Ernst (602*)
    Abel
    , Niels Henrik (2899*)
    Abraham
    bar Hiyya (641)
    Abraham, Max

    Abu Kamil
    Shuja (1012)
    Abu Jafar

    Abu'l-Wafa
    al-Buzjani (1115)
    Ackermann
    , Wilhelm (205)
    Adams, John Couch

    Adams, J Frank

    Adelard
    of Bath (1008) Adler , August (114) Adrain , Robert (79*) Adrianus , Romanus (419) Aepinus , Franz (124) Agnesi , Maria (2018*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (660) Ahmes Aida Yasuaki (696) Aiken , Howard (665*) Airy , George (313*) Aitken , Alec (825*) Ajima , Naonobu (144) Akhiezer , Naum Il'ich (248*) al-Baghdadi , Abu (947) al-Banna , al-Marrakushi (861) al-Battani , Abu Allah (1333*) al-Biruni , Abu Arrayhan (3002*) al-Farisi , Kamal (1102) al-Haitam , Abu Ali (2490*) al-Hasib Abu Kamil (1012) al-Haytham , Abu Ali (2490*) al-Jawhari , al-Abbas (627) al-Jayyani , Abu (892) al-Karaji , Abu (1789) al-Karkhi al-Kashi , Ghiyath (1725*) al-Khazin , Abu (1148) al-Khalili , Shams (677) al-Khayyami , Omar (2140*) al-Khwarizmi , Abu (2847*) al-Khujandi , Abu (713) al-Kindi , Abu (1151) al-Kuhi , Abu (1146) al-Maghribi , Muhyi (602) al-Mahani , Abu (507) al-Marrakushi , ibn al-Banna (12)

    60. Matemáticas Y LaTeX 2005 - Historia De Los Juegos Matemáticos (I) - Papiro Rhi
    Translate this page Fue el matemático francés pierre wantzel (1814-1848) quien probó formalmente queun ángulo w es trisecable con regla y compás si el polinomio 4x³ - 3x
    http://matelatex.blogcindario.com/2005/07/00036.html
    Matemáticas y LaTeX 2005
    Buscador
    Categorias
    Calendario
    Votaciones
    Articulos Anteriores
    Archivo
    Enlaces

    Viernes, 15 de Julio de 2005
    Historia de los Juegos Matemáticos (I) - Papiro Rhind y los Tres Problemas Clásicos Griegos
    Por a las Textos Desde los tiempos más antiguos, los juegos se han visto unidos a la historia de las matemáticas. No es un capricho del destino que los matemáticos de todas las épocas hayan mostrado interés por estos juegos por dos razones principales. Por una parte, muchos tienen un contenido inspirador que propiciado el estudio y desarrollo de diferentes áreas de esta ciencia; y de otro lado, nos encontramos con el carácter lúdico de las matemáticas que se ve perfectamente complementado con el juego.
    Es fácil comprobar como la inmensa mayoría de las partes de la matemática aparecen en distintos juegos:
    - La aritmética está inmersa en los cuadrados mágicos, cambios de monedas,...

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 88    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter