Geometry.Net - the online learning center
Home  - Scientists - Wantzel Pierre
e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 88    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Wantzel Pierre:     more detail

1. Anecdotario Matem Tico
Fue P. L. Wantzel quien en 1837 public por primera vez, en una revista de matem ticas francesa, la primera prueba completamente rigurosa de
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

2. Re Pierre Wantzel By Julio Gonzalez Cabillon
Re Pierre Wantzel by Julio Gonzalez Cabillon. Back to messages on this topic Back to mathhistory-list previous next
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

3. Pierre Wantzel
Wantzel 12 Mar 1997 Pierre Wantzel, by Samuel S. Kutler 13 Mar 1997 Re Pierre Wantzel, by Julio Gonzalez Cabillon 13 Mar 1997
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

4. Choix Du Windows-manager.
Bonjour, Quel est le paquet qui permet de choisir le windowsmanager par d faut sous Potato? Merci d'avance. Pierre-Laurent Wantzel.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

5. Wantzel
Pierre Laurent Wantzel. Born 5 du Commerce. Pierre Wantzel attended primaryschool in Ecouen, near Paris, where the family lived.
http://www.gap-system.org/~history/Mathematicians/Wantzel.html
Pierre Laurent Wantzel
Born: 5 June 1814 in Paris, France
Died: 21 May 1848 in Paris, France
Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Version for printing
Pierre Wantzel Saint-Venant relates in [4] that ... he showed, with his great memory, a marvellous aptitude for mathematics, a subject about which he read with extreme interest. He soon surpassed even his master, who sent for the young Wantzel, at age nine, when he encountered a difficult surveying problem. Bobillier By 1829, at the remarkably young age of 15, he edited a second edition of Reynaud 's Treatise on arithmetic In ... he threw himself into mathematics, philosophy, history, music, and into controversy, exhibiting everywhere equal superiority of mind. Saint-Venant in [4] says that Wantzel:- ... said merrily to his friends that he would be but a mediocre engineer. He preferred the teaching of mathematics... Wantzel is famed for his work on solving equations by radicals . In 1837 Wantzel published proofs of what are some of the most famous mathematical problems of all time in a paper in Liouville 's Journal on ... the means of ascertaining whether a geometric problem can be solved with ruler and compasses Gauss had stated that the problems of duplicating a cube and trisecting an angle could not be solved with ruler and compasses but he gave no proofs. In this 1837 paper Wantzel was the first to prove these results. Improved proofs were later given by Charles

6. References For Wantzel
References for the biography of Pierre Wantzel
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

7. Wantzel
Biography of Pierre Wantzel (18141848)
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

8. The Quadratrix
During the 19th century the French mathematician Pierre Wantzel proved that under these circumstances the first two of those constructions are
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

9. Akolad News Romain
Over 2000 years later, in 1837, a French mathematician named Pierre Wantzel proclaimed that it was impossible to trisect an angle using just a
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

10. Constructible Polygon
that this condition was also necessary, but he offered no proof of this fact, which was proved by Pierre Wantzel in (1836). It seems very
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

11. Biography Of Wantzel, Pierre
Biography of Wantzel, Pierre
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

12. Mportalik - Encyklopedia
Encyklopedia. A B C D E F G H I J K L L M N O P Q R S T U V W X Y Z . wantzel pierre Laurent.
http://mportalik.com/encyklopedia.php?cmd=def&tyt=WANTZEL Pierre Laurent

13. Mportalik - Encyklopedia
wantzel pierre Laurent, WAPIEN. - WARBURG OTTO HEINRICH, - WARCHALOWSKI EDWARD.- WARIACJA, - WARIAK. - WARING Edward, - WARIOMETR
http://www.mportalik.com/encyklopedia.php?cmd=tyt&l=W

14. Wantzel
Biography of pierre wantzel (18141848) pierre wantzel attended primary schoolin Ecouen, near Paris, where the family lived.
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Wantzel.html
Pierre Laurent Wantzel
Born: 5 June 1814 in Paris, France
Died: 21 May 1848 in Paris, France
Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Version for printing
Pierre Wantzel Saint-Venant relates in [4] that ... he showed, with his great memory, a marvellous aptitude for mathematics, a subject about which he read with extreme interest. He soon surpassed even his master, who sent for the young Wantzel, at age nine, when he encountered a difficult surveying problem. Bobillier By 1829, at the remarkably young age of 15, he edited a second edition of Reynaud 's Treatise on arithmetic In ... he threw himself into mathematics, philosophy, history, music, and into controversy, exhibiting everywhere equal superiority of mind. Saint-Venant in [4] says that Wantzel:- ... said merrily to his friends that he would be but a mediocre engineer. He preferred the teaching of mathematics... Wantzel is famed for his work on solving equations by radicals . In 1837 Wantzel published proofs of what are some of the most famous mathematical problems of all time in a paper in Liouville 's Journal on ... the means of ascertaining whether a geometric problem can be solved with ruler and compasses Gauss had stated that the problems of duplicating a cube and trisecting an angle could not be solved with ruler and compasses but he gave no proofs. In this 1837 paper Wantzel was the first to prove these results. Improved proofs were later given by Charles

15. References For Wantzel
References for the biography of pierre wantzel. F Cajori, pierre Laurentwantzel, Bull. Amer. Math. Soc. 24 (1) (1917), 339347.
http://www-groups.dcs.st-and.ac.uk/~history/References/Wantzel.html
References for Pierre Wantzel
Version for printing Articles:
  • F Cajori, Pierre Laurent Wantzel, Bull. Amer. Math. Soc.
  • A de Lapparent,
  • G Pinet, Ecrivains et Penseurs Polytechniciens (Paris, 1902), 20.
  • Saint-Venant, Biographie: Wantzel, Main index Birthplace Maps Biographies Index
    History Topics
    ... Anniversaries for the year
    JOC/EFR April 1997 School of Mathematics and Statistics
    University of St Andrews, Scotland
    The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/References/Wantzel.html
  • 16. Pierre Laurent Wantzel

    http://serge.mehl.free.fr/chrono/Wantzel.html
    , de Descartes et de Gauss Théorème de Wantzel Abel Un nombre constructible est donc est constructible ! Conséquence 1 : la duplication du cube est impossible : Selon le théorème de Wantzel, n'est pas constructible et par suite et la duplication du cube est impossible Q et non constructible. Conséquence 2 : la quadrature du cercle est impossible : quadrature p est transcendant Lindemann p . Il faut donc construire p Quadrature approchée du cercle selon Dinostrate Conséquence 3 : la trisection de l'angle est impossible : trisection de l'angle x : par projection, cos x = OH et la formule : x - 3cos x montre que cos Il est clair que les angles de 180° et 90° sont trisectables ; d'ailleurs si x est trisectable, son double (par report) et sa moitié (bisection) le sont aussi. Ainsi 45° est trisectable :
    • trisecter 90° : on obtient 30°; bissecter 30° : on obtient 15°.
    Q p Or, il est facile de prouver ci-dessous Gauss Noter que les mathématiciens arabes avaient déjà soupçonné l'impossibilité de la trisection géométrique de l'angle en ramenant le problème, comme le fit ultérieurement Al-Biruni : N = b /2. Donc b est pair. Posons b = 2c. Il vient a

    17. Wikipedia:List Of Encyclopedia Topics/Biographies W - Wikipedia, The Free Encycl
    pierre wantzel (1814 ndash;1848), French mathematician;proved impossibility of trisecting angle using only compass straightedge
    http://en.wikipedia.org/wiki/Wikipedia:List_of_encyclopedia_topics/Biographies_W
    Wikimedia needs your help in the final days of its fund drive. See our fundraising page
    The Red Cross and other charities also need your help.
    Wikipedia:List of encyclopedia topics/Biographies W
    From Wikipedia, the free encyclopedia.
    Wikipedia:List of encyclopedia topics
    Contents
    edit
    Section 3
  • Vernon Anthony Walters Walters, Vernon Anthony Carl Ferdinand Wilhelm Walther Walther, Carl Ferdinand Wilhelm ... Sam Sir William Turner Walton Walton, William Turner, Sir Sir William Walworth Walworth, William, Sir Joseph Aloysius Wambaugh Wambaugh, Joseph Aloysius ... Ward, Barbara Sir Joseph George Ward Ward, Joseph George, Sir Marcus Lawrence Ward Ward, Marcus Lawrence ... Warner, John William Sir Pelham Francis Warner Warner, Pelham Francis, Sir Francis Emroy Warren Warren, Francis Emroy ...
  • edit
    Section 4
  • Israel Washburn Jr. Washburn, Israel Jr. William Barrett Washburn Washburn, William Barrett ... Wasmosy, Juan Carlos
    • '''Juan Carlos Wasmosy''' (born [[1939?]]), Paraguayan [[political figure]]; 1st elected civilian pres. of Paraguay 1993
    August von Wassermann Wassermann, August von
  • 18. User:Gerritholl/mathematicians - Wikipedia, The Free Encyclopedia
    William Wallace John Wallis - John Walsh - Wang H siao-t ung - Wang Xiaotong -Albert Wangerin - pierre wantzel - Edward Waring - Mary Warner - Stefan
    http://en.wikipedia.org/wiki/User:Gerritholl/mathematicians
    Wikimedia needs your help in the final days of its fund drive. See our fundraising page
    The Red Cross and other charities also need your help.
    User:Gerritholl/mathematicians
    From Wikipedia, the free encyclopedia.
    User:Gerritholl edit
    Mathematicians
    Ernst Abbe Niels Henrik Abel Abraham bar Hiyya Max Abraham ... Antoni Zygmund Retrieved from " http://en.wikipedia.org/wiki/User:Gerritholl/mathematicians Views Personal tools Navigation Search Toolbox

    19. Biography-center - Letter W
    wwwhistory.mcs.st-and.ac.uk/~history/Mat hematicians/Wangerin.html; wantzel,pierre www-history.mcs.s t-and.ac.uk/~history/Mathematicians/wantzel.html
    http://www.biography-center.com/w.html
    Visit a
    random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish
    W
    475 biographies

    20. Pierre Wantzel
    a topic from mathhistory-list pierre wantzel. 12 Mar 1997 pierre wantzel,by Samuel S. Kutler 13 Mar 1997 Re pierre wantzel, by
    http://mathforum.org/epigone/math-history-list/yolhermtwy
    The Math Forum discussions have moved. You will be redirected momentarily. math-history-list Please update your bookmarks.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 88    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter