Geometry.Net - the online learning center
Home  - Scientists - Tsu Ch'ung Chi
e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-100 of 104    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Tsu Ch'ung Chi:     more detail

81. Das Ch'an Der T'ang Und Sung-Zeit
tsu in Auf Tung-shan und seinen Schüler Ts ao-shan Pen-chi (840-901) geht die
http://www.un-san.de/1f023d950f10c8d0d/1f023d953b10a2301/1f023d953b10bbb0c/index
Za-Zen ?
Shikantaza

Geisteshaltung

Atmung
...
Teil 2

Weitere Dharma-Erben Hui-nengs waren der hochgelehrte Tien-Tai-Mönch Yung-chia Hsüan-chüeh (665-713), der Verfasser des Cheng Tao Ko, und Nan-yang Hui-chung (675?-775?). Dieser war Lehrer und Meister der Kaiser Su-tsung (756-762) und Tai-tsung (763-779) und erhielt daher den Ehrentitel "Landesmeister", Kuo-shih (jap. Kokushi). Am bedeutsamsten für die weitere Entwicklung des Ch'an waren jedoch Hui-nengs Schüler Ching-yuan Hsing-ssu (660-740) und Nan-yueh Huai-jang (677-744), die die Ahnherren aller klassischen Zenschulen werden sollten, der ‚fünf Häuser, sieben Schulen' (jap. Goke-Shichishu).
Beide hatten Schüler, die in der Geschichte des Zen eine herausragende Rolle spielen: Ching-yuan war Lehrer von Shih-t'ou Hsi-ch'ien (700-790) und Nan-yueh von Ma-tsu Tao-i (709-788), die die berühmtesten Lehrer ihrer Zeit waren. Shih-t'ou lehrte in der Provinz Hunan (= ‚südlich des Sees') und Ma-tsu in Kiangsi (= 'westlich des Flusses'). Zwischen beiden Zentren fand ein reger Austausch statt, und es hieß: "Westlich des Flusses lebt Ma-tsu, südlich des Sees Shih-t'ou. Zwischen diesen beiden wandern die Menschen hin und her, und wer diese beiden großen Meister niemals traf, der bleibt ein Unwissender".
Druckbare Version

82. Math Trivia Quiz 1
4. Who estimated Pi ( ) to be around 355/113? A. tsu Ch ung chi B. Pythagoras C.Euclid D. Euler E. Archimedes. 5. What is Pi ( ), exactly?
http://www.ktb.net/~cct/geom/trivia1.html
Math Trivia Quiz 1
Name: If you need help, look at Some Math History 1. Who developed a mathematical Theory of the electron, and won a Nobel Prize for it in 1902? A. Karl Friedrich Gauss
B. Hendrik Antoon Lorentz
C. Rene Descarte
D. Leonhard Euler
E. None of These
2. How do you correctly pronounce "Euler"? A. like "Yoo-Ler"
B. like "Oil-ler"
C. like "AY-oo-ler"
3. Who were the two mathematicians that invented calculus? A. Leibniz and Laplace
B. Gauss and Poincare
C. Newton and Gauss D. Newton and Leibniz E. Fibonacci and Euler 4. Who estimated Pi ( ) to be around 355/113? A. Tsu Ch'ung Chi B. Pythagoras C. Euclid D. Euler E. Archimedes 5. What is Pi ( ), exactly? A. the ratio of a circle's circumfrence over its radius B. the ratio of a circle's circumfrence over its diameter C. 3.1415926 D. the ratio of a circle's diameter over its radius E. None of These 6. Who was the first to use "x" to represent an unknown varible in Algebra A. Descartes B. Viete C. Poincare

83. Wu Chun Lu Clan Notes
See Mao Hankuang, Wo kuo chung-ku ta shih-tsu chih ko-an yen-chiu Lang-yehWang-shih, The original name of the Ch ung-wen kuan was Ch ung-hsien kuan
http://nacrp.cic.sfu.ca/nacrp/articles/wuluclan/wuluclannotes.html
NOTES ) I shall explain the usage of terms such as aristocracy and clan in the following discussion. I am grateful to professors E. G. Pulleyblank and Chen Jo-shui for their comments on the original version of this study. I would also like to thank Professor Ken'ichi Takashima for sending me important material from Japan. ) To understand how the examination system worked in the T'ang see Denis Twitchett, The birth of the Chinese meritocracy: bureaucrats and examinations in Tang China , a lecture delivered to the China Society in London on December 17, 1974 and printed by Bendles (Torquay) Ltd. ) Book-length studies of the Chinese aristocracy in early imperial history already exist, such as David Johnson's The medieval Chinese oligarchy , New York, 1977 and Patricia Ebrey's excellent study, The aristocratic families of early China: A case study of the Po-ling Tsui family , Cambridge University Press, 1978. However, most available studies center on the northern aristocracy in T'ang China. There have not been very many studies of individual southern aristocratic families either in Chinese or in Japanese, not to mention in English. As far as I know, Mao Han-kuang seems to be the main scholar publishing studies on individual southern aristocratic families. See Mao Han-kuang, "Wo kuo chung-ku ta shih-tsu chih ko-an yen-chiu: Lang-yeh Wang-shih," , 37: 2 (1967), 577-610; idem., "Sui T'ang cheng-chuan chung chih Lan-ling Hsiao-shih," in

84. Famous Mathematicians.
125 Diophantus Ist or 3 rd century Pappus c.320 Iamblichus c.325 Proclus 410485Tsu Ch ung-chi 430-501 Brahmagupta c.628 Al-Khwarizmi c.825 Thabit ibn
http://home.egge.net/~savory/maths6.htm
Pre-Einstein famous mathematicians.
Stu Savory, 2004.
If you ask people these days to name a famous mathematician, surveys show the most popular answer to be Albert Einstein . Einstein himself used to like to quote Sir Isaac Newton's famous humble line "If I have seen further than other men, it is by standing on the shoulders of giants." So I asked myself, who were these giants, i.e. famous pre-Einstein mathematicians. Here's the list of the top 100 or so, sorted chronologically. How many do you know? That means you can state what they were famous for, off the cuff, no googling! If you score below 30 you need to do some revision :-) Ahmes c. 1650 B C Pythagoras c.540 BC Hippocrates c.440 BC (that's Hippocrates of Chios, NOT the physician who lived around the same time). Plato c.430-c.349 BC Hippias c.425 BC Theaetetus c.417-369 BC Archytas c.400 B C Xenocrates 396-314 BC Theodorus c.390 BC Aristotle 384-322 BC Menaechmus c.350 BC Euclid c.300 BC Archimedes c.287-212 BC Nicomedes c.240 BC Eratosthenes Gauss , Karl Friedrich 1777-1855 Brianchon, Charles c.1783-1864 Binet, Jacques-Philippe-Marie 1786-1856 Möbius, August Ferdinand 1790-1868 Babbage, Charles 1792-1871 Laine, Gabriel 1795-1870 Steiner, Jakob 1796-1863 de Morgan, Augustus 1806-1871 Liouville, Joseph 1809-1882 Shanks, William 1812-1882 Catalan, Eugene Charles 1814-1894 Hermite, Charles 1822-1901 Riemann, Bemard 1826-1866 Venn, John 1834-1923 Lucas, Edouard 1842-1891 Cantor, George 1845-1918 Lindemann, Ferdinand 1852-1939 Hilbert, David 1862-1943 Lehmer, D. N. 1867-1938 Hardy, G. H. 1877-1947 Ramanujan, Srinivasa 1887-1920

85. Encyclopedia Mythica: Conversion Chart
Ch ao Che Ch e Chen Ch en Cheng Ch eng chi Ch ih Chong Ch ung Chou Ch ou Pinyin WadeGiles Ji chi Jia chia Jian chien Jiang chiang Jiao chiao Jie
http://www.pantheon.org/miscellaneous/conversion_chart.html
Miscellaneous
Search
Feedback

Submit Article

Mythology
...
Links
Conversion chart
The names of deities and places in the Chinese mythology area are transcribed according to the pinyin system of romanization. This system was officially adopted by the People's Republic of China in 1979. The names according to the previously standard Wade-Giles system, which is still widely employed, are provided in each article. Pinyin Wade-Giles Ba Pa Bai Pai Ban Pan Bang Pang Bao Pao Bei Pei Ben Pen Beng Peng Bi Pi Bian Pien Biao Piao Bie Pieh Bin Pin Bing Ping Bo Po Bu Pu Pinyin Wade-Giles Ca Ts'a Cai Ts'ai Can Ts'an Cang Ts'ang Cao Ts'ao Ce Ts'e Cen Ts'en Ceng Ts'eng Cha Ch'a Chai Ch'ai Chan Ch'an Chang Ch'ang Chao Ch'ao Che Ch'e Chen Ch'en Cheng Ch'eng Chi Ch'ih Chong Ch'ung Chou Ch'ou Chu Ch'u Chuai Ch'uai Chuan Ch'uan Chuang Ch'uang Chui Ch'ui Chun Ch'un Chuo Ch'o Ci Tz'u Cong Ts'ung Cou Ts'ou Cu Ts'u Cuan Ts'uan Cui Ts'ui Cun Ts'un Cuo Ts'o Pinyin Wade-Giles Da Ta Dai Tai Dan Tan Dang Tang Dao Tao De Te Dei Tei Deng Teng Di Ti Dian Tien Diao Tiao Die Tieh Ding Ting Diu Tiu Dong Tung Dou Tou Du Tu Duan Tuan Dui Tui Dun Tun Duo To Pinyin Wade-Giles E E Ei Ei En En Er Erh

86. Wang Ch'ung
Philosophy of Wang Ch ung 2797CE, extracts. Wang Ch’ung (27-97 CE) was bornin Shang-yu, Kuei-chi, china and studied at the academy in the capital,
http://www.humanistictexts.org/wangchung.htm
Authors born between 200 BCE and 00 CE Jesus Ben Sirach Sima Qian Tiruvalluvar Lucretius ... Epictetus Click Up For A Summary Of Each Author Contents Introduction Origination Spontaneous Action The Purposeless Heavens ... Source
Introduction
Wang Ch’ung (27-97 CE) was born in Shang-yu, Kuei-chi, China and studied at the academy in the capital, Loyang. Legend says he was so poor as to be unable to buy books, having to read them standing in the market place and in shops. He was said to have gained a formidable grounding in Chinese literature in this way because of his remarkable memory. He was an independent thinker, associating with no specific school, although he made use of both Taoist and Confucian principles. When he became secretary in a prefecture, his argumentative nature was said to be the cause of his eventual removal from this position. Quietly and in private, he subsequently wrote the book for which he is famous—the Lun-heng (Disquisitions) . In some 85 chapters totaling 200,000 words he scrutinized and criticized common errors and superstitions. As there was not a strong scientific tradition in China at this time, his arguments are occasionally based on rather shaky factuality. Nevertheless, he struck a major blow against magic-based religiosity. He died at about the age of 70, by which point he had been recognized as a natural genius and had been summoned to meet the Emperor. He was, however, too ill to attend. After his death, the existence of his book became known and his ideas began to enter the mainstream of Chinese philosophy.

87. The Wonders Of Pi - The Ancients
Not many further improvements on archimedes methods occured until tsu Ch ungChia chinese mathematician who calculated pi to be accurate to 7 digits using
http://people.bath.ac.uk/ma3mju/ancients.html
The Ancients [The Pi Timeline] [The Ancients] [The Age Of Newton] [Twentieth Century] Accounts of Pi begin at about 2000 BC, the Babylonians approximated pi to be about 3 1/8 = 3.125. Around the same time as the Babylonians the egyptians had also calculated an approximation to pi they assumed a circle of diameter 9 had the same area of a square of side 8. This led the egyptians to a value of pi equal to 256/81. Others around the time of the ancients assumed pi to be equal to 3 as shown in the old testiment Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits in height thereof; and a line of thirty cubits did compass it round about (1 Kings 7:23) Later at about 250 BC Archimedes found a more accurate value of pi, he used a geometrical method to calculate pi. For this method Archimedes realised that a polygon of n sides inscribed by a circle had a smaller circumfrence and a polygon of n sides circumscribing a circle had a perimeter greater than the circumference of a circle. As n became larger the approximation became closer to the circumference. This allowed Archemedies to calculate pi to be between 3 10/71 and 3 1/7. Not many further improvements on archimedes methods occured until Tsu Ch'ung-Chi a chinese mathematician who calculated pi to be accurate to 7 digits using a variation of Archimedes method.

88. Acad.
Cutter, Robert Joe, Cao chi s Symposium Poems , chinese Literature Liu Weich ung, Ts ao chih P ing-chuan, Li-ming wen-hua shih-yeh, Taipei, 1977?.
http://www.idiocentrism.com/china.shihbib.htm
Bibliography of the Wei-Chin period, the Chien-An masters and the poets of the Ts'ao clan, and the origins of Chinese shih poetry John J. Emerson My new site: www.idioc entrism.com At gmail dot com I am known as emersonj Allen, Joseph, "The End and the Beginning oif Narrative Poetry in China", Asia Major , Third Series, Vol. II, Part 1, pp. 1-24. Balasz, Etienne, Chinese Civilization and Bureaucracy , Yale, 1964. Bauer, Wolfgang, China and the Search for Happiness , Seabury, 1976. Bielenstein, The Bureaucracy of Han Time s, Cambridge, 1975. Birrell, Anne, Popular Songs and Ballads of Han China , Hawaii, 1988. Birrell, Anne, New Songs from a Jade Terrace , Penguin, 1982. Chang K'e-li, ed., San Ts'ao nien-p'u , Ch'i-Lu Book Co., Taiwan, 1983. Chao Yu-wen, Ts'ao Chih chi chiao-chu , Jen-min wen-hsueh publishing, Beijing, 1984. Chao Fu-tan, Ts'ao Wei fu-tzu shih hsuan , Beijing, 1988. Ch'en I-pai, Ts'ao Tzu-chien shih yen-chiu , Shang-wu Publishing, Taipei, 1981. Chiang Chien-chun, Chien-an ch'i tzu hsueh-shu , Wen-hsueh chieh-hsueh Publishing, Taipei, 1982.

89. Hanyu Pinyin To Wade-Giles Conversion Table
chen, ch en. cheng, ch eng. chi, ch ih. chong, ch ung. chou, ch ou. chu, ch u.chua, ch ua. chuai, ch uai. chuan, ch uan. chuang, ch uang
http://www.personal.leeds.ac.uk/~chifc/pinyinwadegiles.html
Hanyu Pinyin and Wade-Giles Conversion
Shortcut to Conversion Tables Please note that Hanyu Pinyin joins characters together to form words like this: "zixingche," while Wade-Giles marks the boundary between characters with a hyphen, like this: "tzu-hsing-ch'e." Try to look up the correct Pinyin from the tables below: Chieh-chi tou-cheng should become jieji douzheng; pan chia should become ban jia; che-hsüeh should become zhexue; and Chung-kuo should become Zhongguo. Hanyu Pinyin and Wade-Giles are almost 100 per cent interchangeable if used correctly. That means that a transcription can be transferred from one into the other virtually without causing ambiguity or loss of information. However, in the three following cases you may need to pay careful attention:
  • "Lo": In Wade-Giles, the spelling "lo" is used for two quite different syllables which are spelled le and luo in Hanyu Pinyin. The (rarely used) syllable spelled lo in Hanyu Pinyin is also spelled lo in Wade-Giles.

90. Wadegile
Ke ch u«Pai mao n u»ch ung shang wu t ai, «?», v. 5 p.150 «K ung ch ueh tan» ti 1 mu t ung chi ch iao p an lao chun
http://www.unc.edu/~bolick/wk.htm
K
K'an ¡mNan kuan ts'ao¡nyen ch'u hou ¬Ý¡m«n«a¯ó¡nºt¥X«á v. 2 : p.215 K'an k'e hs"ueh yen chiu ch'eng chi chan lan ¬Ý¬ì¾Ç¬ã¨s¦¨ÁZ®iÄý v. 5 : p.61 K'an Kao-chia j"u t'uan yen¡mLien sheng 3 chi¡n ¬Ý°ª¥Ò¼@¹Îºt¡m³s¤É¤T¯Å¡n v. 4 : p.139 K'an le¡mCh'in l"ueh¡n ¬Ý¤F¡m«I²¤¡n v.16 : p.300 K'an le¡mK'ang Mei y"uan Ch'ao¡n ti 2 pu ¬Ý¤F¡m§Ü¬ü´©´Â¡n²Ä¤G³¡ v. 5 : p.418 K'an Wu-han ti 11 chieh heng tu Ch'ang-chiang pi sai ¬ÝªZº~²Ä¤Q¤@©¡¾î´çªø¦¿¤ñÁÉ v. 5 : p.108 K'an y"u min ch'u hai ¬Ýº®¥Á¥X®ü v. 4 : p.170 K'an¡mLiang Hung-y"u¡n ¬Ý¡m±ç¬õ¥É¡n v. 2 : p.415 K'an¡mNiu-lang Chih-n"u¡nwu ch"u ¬Ý¡m¤û­¦Â´¤k¡n»R¼@ v. 4 : p.343 K'an¡mSun-wu-k'ung san ta Pai- ku-ching ¡n ¬Ý¡m®]®©ªÅ¤T¥´¥Õ°©ºë¡n v. 4 : p.326 Kan ch'ao jen wu »°¶W¥ô°È v. 5 : p.62 Kan huai ·Ph v. 2 : p.269 Kan k'u kang jou ¥Ì­W­è¬X v.16 : p.360 ¡mKan lan¡n ¡m¾ñÆV¡n v. 9 : p.241-384 Kan shih si shou v. 2 : p.353 A B C D ... Home ¡mKan y"uan tso p'ao hui¡n ¡m¥ÌÄ@°µ¬¶¦Ç¡n v. 6 : p.154-191 ¡mKan y"uan tso p'ao hui¡n ti 1 mu ¡m¥ÌÄ@°µ¬¶¦Ç¡n²Ä¤@¹õ v. 6 : p.154 ¡mKan y"uan tso p'ao hui¡n ti 2 mu ¡m¥ÌÄ@°µ¬¶¦Ç¡n²Ä¤G¹õ v. 6 : p.162

91. La Cuadratura Del Circulo: Un Problema Insoluble Pero Divertido
ung chi y la de Hobbes. Nótese que al construir a pi se está,de forma directa, calculando la longitud de la circunferencia.
http://webs.adam.es/rllorens/picuad/picarta01.htm
LA CUADRATURA DEL CIRCULO: UN PROBLEMA INSOLUBLE
PERO DIVERTIDO.

Una construcción geométrica aproximada de la cuadratura del círculo con regla y compás con tales fines "pedagógicos"
1) la mejor posible
2) el posible
radio dato ) para llegar al lado del cuadrado Fig. 1
(del lado del cuadrado problema) Valor de pi equivalente Error relativo (ppm) Origen Notas El papiro Rhind1650 AC Babilonia 2000 AC Ver el texto:"CUADRATURA DE KEOPS": 4/raiz(fi) = 3.1446 Ver el texto:"CUADRATURA DE 22/7" Arquímedes manejo esta aproximación como "cota superior" Cuadratura C.Calvimontes(Ver: http://www.urbtecto.com/ Cuadratura inspirada en un dibujo de Leonardo Sumar al cuadrado (R fi)2 otro igual a 1/5 del anterior 6/5 fi^2 = 3.1416408 Hobson 1913 (2) CMP Realizable en 13 pasos Ver el texto Ramanujan 1913 (2), (3), (5) [(45raiz(2)(fi+1))/94]^2 = 3.141592685 Abelardo Falleti Ramanujan 1914 (2) (4)
visualizar la "ppm" es pensar en cometidos por cada Km
(2) citado en http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Squaring_the_circle.html

92. Encyclopedia Of Chinese Philosophy -- A-Z Entries
Confucianism Han by chiyun CHEN Confucianism Humanism and the Enlightenmentby Wei-ming TU Wang Chong (Wang Ch ung) by Michael NYLAN
http://www.routledge-ny.com/ref/chinesephil/azentries.html
(List of entries is not final and is subject to change prior to publication.) A B C D ... Z
A
Aesthetics by Kuang-ming WU B
Buddhism in China: A Historical Survey byWhalen LAI
Buddhism, Chan (Zen) by Hsueh-li CHENG C
Calligraphy by Jiuan HENG
Chen Daqi (Ch'en Ta-ch'i) by Vincent SHEN
Chen Xianzhang (Ch'en Hsien-chang) by William Yau-nang NG
Cheng: Wholeness or Sincerity by Kwong-loi SHUN
Cheng Hao (Ch'eng Hao) by Tze-ki HON
Cheng Yi (Ch'eng I) by Tze-ki HON Chengyi: Making One's Thought Sincere by Kwong-loi SHUN Chiang Kai-shek (Jiang Jieshi) by Ke-wen WANG Comparative Philosophy by David B. WONG Confucianism: Confucius (Kongzi) by Roger T. AMES Confucianism: Confucius's Classical Thought by Pei-jung FU Confucianism: Dialogues by John BERTHRONG Confucianism: Ethics by A. S. CUA Confucianism: Ethics and Law by Fuldien LI Confucianism: Han by Chi-yun CHEN Confucianism: Humanism and the Enlightenment by Wei-ming TU Confucianism: Japan by Mary Evelyn TUCKER Confucianism: Korea by Young-chan RO Confucianism: Ming by Thomas A. WILSON

93. Geometria A Várias Dimensões - O Número PI
ung chi (430-501 dC) 355/113;. al-Khwarizmi (c. 800 ) 3.1416;.al-Kashi (c. 1430) , com 14 casas decimais;
http://www.educ.fc.ul.pt/icm/icm99/icm43/pi.htm
O número PI Página Inicial Plano Espaço Fractais ... Links O número é definido como sendo a razão entre a circunferência de um círculo e o seu diâmetro. Mas este número tem outras personalidades. É também um número irracional e um número transcendente. O fascínio pelo e a determinação do seu valor têm acompanhado a matemática ao longo da sua história. Desde cedo que se teve consciência de que o seu valor é constante. No Antigo Testamento, no Livro dos Reis e nas Crónicas , o valor de era 3. Na Babilónia, esse valor era de 25/8. Para os egípcios, de acordo com o papiro de Rhind, = 4(8/9)² = 3.16. Estes valores foram determinados recorrendo a medições (ver actividade Entretanto, o valor de passou também a ser determinado através de cálculos teóricos. Por exemplo, Arquimedes (287-212 a.C.) situou o valor de entre 3(1/7) e 3(10/71), fazendo aumentar o número de lados de um polígono inscrito . Por sua vez, Ptolomeu, em 150 d.C., estimou esse valor em 3,1416. Outros matemáticos estimaram o valor de , como por exemplo: Tsu Ch'ung Chi (430-501 d.C.) : 355/113;

94. Mensa Argentina - Sociedad De Alto Cociente Intelectual
ung chi lo definió comola razón 355/113 que difiere por menos de 1 millonésima del valor actual.
http://www.mensa.com.ar/Juegos/enigmas.html
Mensa Argentina
Sociedad de alto CI
Próximas tomas
Presionar aqui para ver futuras fechas de exámen
Preinscripción
Juegos y enigmas
Problema 1: La lamparita
Se encuentra una lamparita en una habitación cerrada y afuera tres perillas. Una de ellas prende la lamparita, el resto no. Usted esta afuera y debe averiguar cual de las tres perillas es la que prende la lamparita con una condición: puede entrar solo una vez a la habitación. Buena suerte!
Problema 2: Con monedas y balanzas
Tiene esta vez una balanza electrónica (de las que dan el peso justo) y 15 monedas de curso legal. Le cuentan que una de ellas es falsa pero la única diferencia es su peso. Una de ellas es más pesada que el resto. Haciendo uso de la balanza solo cuatro veces deberá determinar cual de las 15 monedas es falsa. Este problema es uno de los que sacan el sueño, no se rindan!
Problema 3: Acortando caminos
Problema 4: La sentencia
Un explorador es capturado por una tribu cuyo jefe decide que el hombre debe morir. El jefe era un hombre muy lógico y decide darle al explorador una elección. El explorador debería pronunciar una sentencia. Si esta resultaba verdadera, seria tirado desde un precipicio. Si resultaba falsa, seria tirado a los leones. ¿Que sentencia deberá el astuto explorador decir para forzar al jefe a dejarlo ir?

95. WadeGiles
Setcho Juken, Hsuehtou Ch ung-hsien, Xuetou Chongxian, iriz. Setsugan Sokin,Hsueh-yen tsu-ch in, Xueyan Zuqin, iriz. Setsu in Jikaku, Hsueh-yin Tz u-chiao
http://www.thezensite.com/ZenMasters/WadeGiles.htm
ZenMastersWade-Giles sort Japanese Wade- Giles (sort) Pinyin Dates source Notes Gozan Ao-shan Aoshan Choan Ch'ang-an Changan Chokei Eryo Chang-ch'ing Hui-leng Changqing Huileng ra from: Xuefeng Yicum Chokei, Fukushu Dai-an Chang-ch'ing Ta-an Chanqing Daan kt Chosetsu Shusai Chang-cho Hsiu-ts'ai Zhangzhuo Xiucai ra from: Shih-shuang Ch'ing-ch Chosa Keijin Ch'ang-sha Ching-tsen Changsha Jingcen 868 d. yam from: Nanquan Puyuan Joso Shogaku Ch'ang-tsung Chao-chueh Tando Bunjun Chan-t'ang Wen-chun Zuigan Shigen Ch'an-yueh Joshu Jushin Chao-chou Ts'ung-shen Zhaozhou Congshen ra from: Nanquan Puyuan Sato Ch'a-tu Chadu Chin Sonshuku Ch-en Tsun-su Bokuju Chinson-shuku Chen Tsun-su (Mu-chou) Muzhou Daozong c 9C kt from: HuangboXiyun Shingetsu Seiryo Chen-hsieh Ch'ing-liao Zhenxie Qingliao yam from: Tan-hsia Tzu-ch'un Konan Chiang-nan Jiangnan ra Konan Chiang-nan Jiangnan Kassan Zenne Chia-shan Shan-hui Jiashan Shanhui ra from: Chuanzi Decheng Kempo Ch'ien-feng Zengen Chuko Chien-yuan Chung-hsing Jianyuan Zhongxing kt from: Guishan Lingyou Zengetsu Chien-yuan Chung-hsing Jianyuan Zhongxing ra Chisha Gen'an Chih-che Yuan-an Chisen Chih-hsien Zhixian dum from: Hung-jen Shiko Chih-kung Zhigong ra Chimon Chih-men ra Chimon Koso Chih-men Kuang-tso Zhimen Guangzu 1031 d.

96. ZenMastersJapanese
Baso Doitsu, Ma-tsu Kiangsi Tao-i, Mazu Daoyi, c 9C, kt. Bodhidharma, P ut i-ta-mo Godai Mumyou, Wu-t ai Wu-ming, dum, from Sung-yuan Ch ung-yueh
http://www.thezensite.com/ZenMasters/Japanese.htm
ZenMasters Japanese sort Japanese (sort) Wade- Giles Pinyin Dates source Notes Banzan Hoshaku Panshan Baoji Basho Esei Pa-chiao Hui-ch'ing Bajiao Huizing Baso Do-itsu Ma-tsu Kiangsi Tao-i Mazu Daoyi c 9C kt Bodhidharma P'u-t'i-ta-mo Putidamo First Patriarch Bokuju Chinson-shuku Chen Tsun-su (Mu-chou) Muzhou Daozong c 9C kt from: HuangboXiyun Bokuju Chinson-shuku Mu-chou Tao-tsung Bokushu Doso (Domyo) Mu-chou Tao-tsung Bukko Nyoman Foguang Ruman Busen Doshin Feng-hsien Tao-shen kt from: Lo-han Kuei-ch'en Bushun (Mujun) Shihan Wu-chun Shih-fan ra from: Yangshan Huiji Bussho Hotai Fuxing Fatai gncc from: Touzi Yiqing Bussho Tokko Fo-chao Te-Kuang Fozhao Deguang yam from: Shoushan Xingnian Busso Daikan Wu-chu Ta-kuan Butchi Tan'yu Fo-chih T'uan-yu dum from: Ta-hui Tsung-kao Butsugen Seion Fo-yen Ch'ing-yuan Butsugen Seion Fuyan Qingyuan c 12C kt from: Yuanwu Keqin Butsu-in Ryogen Foyin Liaoyuan Chigan Chih-yen Zhiyan dum from: Fa-jung Chii Chih-wei Zhiwei dum from: Fa-chih Chimon Chih-men ra Chimon Koso Chih-men Kuang-tso Zhimen Guangzu 1031 d. yam from: Hsiang-lin Ch'eng-yuan Chin Sonshuku Ch-en Tsun-su Chisen Chih-hsien Zhixian dum from: Hung-jen Chisha Gen'an Chih-che Yuan-an Choan Ch'ang-an Changan Choka Dorin Niaowo Daolin kt Chokei Eryo Chang-ch'ing Hui-leng Changqing Huileng ra from: Xuefeng Yicum Chokei, Fukushu Dai-an

97. Premier Millénaire - Chronologie Des Mathématiques
ung chi. C a lcule p jusqu à l a 9e décimale. 600. Vers cette époque, lesystème de numération indien ressemble au système décimal actuel
http://villemin.gerard.free.fr/Esprit/Date0.htm
NOMBRES - Curiosités, théorie et us a ges Accueil Dictionnaire Rubriques Index ... M'écrire Édition du: Jouer à r a isonner: M a thém a a thém a ticiens DATES Av. J.-C. CHRONOLOGIE des a nnées 1 à 1000 Voir Citations des années 1 à 1500 Voir aussi Liste alphabétique Dates des inventions du siècle Lien Date Nom Événement Nicomachus Nombres parfaits, abondants et déficients Ptolémée Diophante Équations Diophantiennes Saint Augustin Il a écrit Les Confessions Tsu Ch'ung Chi C a lcule p jusqu'à l a 9e décimale Vers cette époque, le système de numération indien ressemble au système décimal actuel Al Khwarizmi i Surnom du mathématicien arabe Ouzbekistan Abu Ja'far Muhammad ibn Mûsâ al-Khowârizmi Son nom a donné le mot Algorithme Auteur du premier traité important d'algèbre Kitab al jabr w' al-muqabala Son ouvr a ge a donné le mot Algèbre a l j a br veut dire " a ccomplissement") Les Ar a bes a doptent les chiffres indiens, y compris le zéro Serment de Strasbourg Le roman devient le français Gerbert d'Aurillac Gerbert En Espagne, il s'initie à la culture arabe et aux chiffres arabes (qui viennent en réalité d'Inde) Ce sont nos chiffres dont l'us a ge est très pr a tique: ils simplifient les opér a tions Il introduit ces chiffres et les abaques pour compter et multiplier Il écrit des ouvrages d'arithmétique Il perfectionne l'astrolabe Gerbert Devient Pape sous le nom de Sylvestre II PTOLÉMÉE Claude vers 100 - vers 170 70 ans Grec Alexandrie Auteur de « Alm a geste » (le plus gr a nd) constitué de 13 livres: ouvr a ge de référence d’ a stronomie jusqu’à Copernic et Kepler

98. Tsu
The summary for this Chinese (Traditional) page contains characters that cannot be correctly displayed in this language/character set.
http://steiner.math.nthu.edu.tw/ne01/jyt/biography/chijoshau/
¯³¤E»à
¡]Tsu Ch'ung Chi¡^
¦è¤¸430¦~¥Í©óªe¥_¡A¦º©ó¦è¤¸501¦~ ªº­º»â¡A¦b1274¦~9¤ë¡A¥L§¹¦¨¤F¥Lªº¥¨§@''¤E³¹ºâ¼Æ''¡C
¦b®Ñ¤¤¥L¤]¦ôºâ¤F£kªºªñ¦ü­È¡A¥L§Q¥Î ³o­Ó¤À¼Æ¥h¦ôªñ£kªº¡A¥O¤HÅå³Yªº¬O¡A¨ì¤p¼ÆÂI²Ä¤»¦ì¬°¤î¡A³oµ²ªG³£¬O¥¿½Tªº¡A
¦Ó¯³¤E»à¤]¬O¤@¦ì¤Ñ¤å¾Ç®a©M¾äªk¾Ç®a¡A¥L¦b¦è¤¸463¦~³Ð³y¤F·sªº¾äªk¡A¤£¹L±q¨Ó¨S¦³¬I¦æ¡A¦]¬°ÁöµM¥L¦b¯à°÷·Ç½Tªº§PÂ_¥X®L¦Ü¡A¦ý¬O¦]¬°¥Lªº¤èªk¬O§Q¥Î¤Ó¶§¦b¤¤¤Èªº³±¼v¨Ó§PÂ_¡A¥u¬O¤¤¤Èªº³±¼v¹ê¦b¬O¤£®e©ö¶qªº«Ü¬ì¾Ç¡C °Ñ¦Ò¸ê®Æ¡G
¼Æ¾Ç®a¶Ç©_-¤E³¹¥Xª©ªÀ
¼Æ¾Ç½Ï¥Íªº¬G¨Æ-¤E³¹¥Xª©ªÀ
http://www-history.mcs.st-and.ac.uk/history/BiogIndex.html

99. ZUR ZAHL Pi - Vom Mittelalter Bis Zur Moderne
ung-chi entdeckte Adriaen Metius dieselbe Näherung355/113, als er das arithmetische Mittel von Zähler und Nenner der beiden
http://www.pimath.de/quadratur/pi_geschichte2.html
Zur Geschichte der Zahl Pi ( p Vom Mittelalter bis zur Moderne Adriaen Metius, Valentius Otho Ludolph von Ceulen Jacob Marcelis Reihenentwicklungen ... weiter Im Mittelalter wurden, in Europa, die Verfahren zur Berechnung von p erheblich verfeinert. Tycho de Brahe p den Wert: und Rechtsgelehrte Francois Viete p bis auf 9 Dezimalstellen angab.
Viete , (lateinisch Vieta) der "Vater" der modernen Algebra, stellte erstmals eine geschlossene Formel für p F. Rudio im Jahre 1891 beweisen. Adrian Metius , Valentius Otho Mehr als 1000 Jahre nach Tsu Ch'ung-Chi entdeckte Adriaen Metius
Beachtenswert ist hier, das durch den relativ einfachen Bruch 333/106 insgesamt 4 Dezimalstellen von p anfallen: Valentinus Otho bekannt wurde. Ludolph von Ceulen Ludolf von Ceulen (1539-1610). Er errechnete p auf 35 Stellen genau. p Ludolph van Ceulen widmete einen grossen Teil seiner Arbeit und seines Lebens der Berechnung der Zahl p . 1596 errechnete er 20 richtige Stellen und kurz vor seinem Tod weitere 15. Dabei diente ihm die Archimedische Methode als Grundlage. Er benutzte ein- und umschriebene Polygone mit 2 Seiten. Die letzten drei der von ihm berechneten Ziffern wurden in seinen Grabstein eingemeisselt.

100. Warring States Reference |  Common Alphabetic Romanization (1)
ung ch ung. dzei. zei. tsei. chyw. qu. ch ü. dzou. zou. tsou. chywaen.quan. ch üan. dzu. zu. tsu. chywe. que. ch üeh. dzun. zun. tsun. chywn
http://www.umass.edu/wsp/reference/chinese/romanization/ca1.html
Romanization Tables: Common Alphabetic (1)
CA PY WG CA PY WG CA PY WG a a a cha cha ch'a da da ta ai ai ai chai chai ch'ai dai dai tai an an an chan chan ch'an dan dan tan ang ang ang chang chang ch'ang dang dang tang ar er erh chau chao ch'ao dau dao tao au ao ao chi qi ch'i dei dei tei chin qin ch'in di di ti ba ba pa ching qing ch'ing ding ding ting bai bai pai chou chou ch'ou dou dou tou ban ban pan chr chi ch'ih du du tu bang bang pang chu chu ch'u dun dun tun bau bao pao chun chun ch'un dung dong tung bei bei pei chung chong ch'ung dv de te bi bi pi chv che ch'e dvng deng teng bin bin pin chvn chen ch'en dwan duan tuan bing bing ping chvng cheng ch'eng dwei dui tui bu bu pu chwai chuai ch'uai dwo duo to bvn ben pen chwan chuan ch'uan dyau diao tiao bvng beng peng chwang chuang ch'uang dye die tieh bwo bo po chwei chui ch'ui dyen dian tien byau biao piao chwo chuo ch'o dyou diu tiu bye bie pieh chya qia ch'ia dz zi tzu byen bian pien chyang qiang ch'iang dza za tsa chyau qiao ch'iao dzai zai tsai chye qie ch'ieh dzan zan tsan chyen qian ch'ien dzang zang tsang chyou qiu ch'iu dzau zao tsao chung chong ch'ung dzei zei tsei chyw qu dzou zou tsou chywaen quan dzu zu tsu chywe que dzun zun tsun chywn qun dzung zong tsung dzv ze tse dzvn zen tsen dzvng zeng tseng dzwan zuan tsuan dzwei zui tsui dzwo zuo tso Romanization Conversion Tables 1 Sept 2001 / Contact: Web Manager Conversion Tables Index Page

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 5     81-100 of 104    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

free hit counter