Geometry.Net - the online learning center
Home  - Scientists - Sierpinski Waclaw
e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-100 of 107    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Sierpinski Waclaw:     more books (43)
  1. General Topology by Waclaw Sierpinski, 2000-03-06
  2. Pythagorean Triangles (Dover Books on Mathematics) by Waclaw Sierpinski, 2003-08-15
  3. Hypothese Du Continu by Waclaw Sierpinski, 1934
  4. General Topology : Mathematical Expositions No. 7 by Waclaw Sierpinski, 1952
  5. On the Congruence of Sets & Their Equivalence By by Waclaw Sierpinski, 1954
  6. 250 Problems in Elementary Number Theory (Modern analytic and computational methods in science and mathematics) by Waclaw Sierpinski, 1971-03-26
  7. 250 Problems in Elementary Number Theory. by Waclaw Sierpinski, 1970-01-01
  8. Trojkaty Pitagorejskie Monagrafie Popularnonauko by Waclaw Sierpinski, 1954
  9. Cardinal and ordinal numbers (Polska Akademia Nauk. Monografie matematyczne tom 34) by Waclaw Sierpinski, 1958
  10. Elementary theory of numbers (Polska Akademia Nauk. Monografie matematyczne) by Waclaw Sierpinski, 1964
  11. Biography - Sierpinski, Waclaw (1882-1969): An article from: Contemporary Authors by Gale Reference Team, 2003-01-01
  12. Waclaw Sierpinski: An entry from Gale's <i>Science and Its Times</i>
  13. University of Warsaw Faculty: Michel Foucault, Waclaw Sierpinski, Kazimierz Kuratowski, Zygmunt Bauman, Leszek Kolakowski, Jerzy Szacki
  14. Polish Mathematics: Polish Mathematicians, Waclaw Sierpinski, Stefan Banach, Alfred Korzybski, Yulian Vasilievich Sokhotski, Albert Brudzewski

81. Coats-of-Arms Of Scientists - Cross-Index - Numericana
Translate this page sierpinski, waclaw 1882-1969 Sklodowska, Marie Curie- 1867-1934 Stanislaw Lesniewski1886-1939 waclaw sierpinski 1882-1969 Watt, James E. 1736-1819
http://home.att.net/~numericana/arms/alpha.htm
Alphabetical:
A
Ada Byron

Adam Ries

Adrien-Marie Legendre

Albert
, Saint 1205-1280
Albert de Lapparent

Albert the Great

Albertus Magnus

Alessandro Volta
...
Aquinas
, Thomas 1225-1274
d' Aquin , St. Thomas 1225-1274 Augustin Cauchy Avogadro , Amedeo 1776-1856 B Bacon , Roger 1214-1294 Bacon , Sir Francis 1561-1626 Barrow , Isaac 1630-1677 Behring , Emil von 1854-1917 Benjamin Franklin Bernoulli , Daniel 1700-1782 Bernoulli , Jacob 1655-1705 Bernoulli , Johann 1667-1748 Berthollet , Claude 1748-1822 Bertrand Russell Berzelius Bigollo Fibonacci 1170-1250 Blaise Pascal Bochart de Saron Bohr , Niels 1885-1962 , Albrecht von 1205-1280 Bombastus von Hohenheim Bonacci , Leonardo 1170-1250 Boyle , Robert 1627-1691 Brahe , Tycho 1546-1601 Braun , Wernher von 1912-1977 Breteuil , Gabrielle-Emilie de 1706-1749 Broglie , Louis de 1892-1987 Buffon , Comte de 1707-1788 Byron , Augusta Ada 1815-1852 C Cardan Cardano , Girolamo 1501-1576 Caritat de Condorcet Carl Auer von Welsbach Carl Friedrich Gauss Carnot , Sadi 1796-1832 Cassini , Comte de 1748-1845 Cauchy , Augustin 1789-1857 Cavendish , Henry 1731-1810 Chanteloup , Chaptal de 1756-1832 Chaptal de Chanteloup Chardin , Pierre Teilhard de 1881-1955 Charles Darwin Charles Parsons , Emilie du 1706-1749 Christiaan Huygens Christopher Wren Clapeyron , Emile 1799-1864 Claude Berthollet Clerk Maxwell , James 1831-1879 Cochon de Lapparent , Albert 1839-1908 Colchester , William of 1544-1603 Condorcet , Caritat de 1743-1794 Copernicus , Nicolaus 1473-1543 Coriolis , Gaspard Gustave 1792-1843

82. Das Fraktale Sierpinski-Dreieck Als Java-Applet
Translate this page (Nach waclaw sierpinski, poln. Mathematiker, 1882-1969) (waclaw sierpinski).Download sierpinski_Dreieck.zip (Applet und Code ca. 2 kb)
http://www.jjam.de/Java/Applets/Fraktale/Sierpinski_Dreieck.html
JJAM
Home

Applets

Tetraeder ...
Kugel 2

Fraktale:
Juliamenge
Juliamenge MA

Julia-Generator

Koch-Kurve
...
Lindenmayer-System 2
Mathematik: Funktionsplotter Eratosthenes-Sieb Miller-Rabin-Test Verschiedenes: Morsezeichen-Ticker Analoguhr Scripts Kontakt - Anzeige - - Applets : Fraktale : Sierpinski-Dreieck - Das fraktale Sierpinski-Dreieck als Java-Applet. Das Sierpinski-Dreieck (Nach Waclaw Sierpinski, poln. Mathematiker, 1882-1969) [Das fraktale Sierpinski-Dreieck als Java-Applet mit Quellcode zum Download. Das Sierpinski-Dreieck lässt sich allerdings nur mit aktiviertem Java betrachten !] Sierpinski.java (Waclaw Sierpinski) Download Sierpinski_Dreieck.zip (Applet und Code ca. 2 kb) Impressum Datenschutz Nutzung eMail

83. Courbe De Sierpinski
Translate this page Courbe étudiée par sierpinski en 1912. waclaw sierpinski (1882-1969) mathématicienpolonais. La courbe de sierpinski est une courbe remplissant un carré,
http://www.mathcurve.com/fractals/sierpinski/sierpinskicourbe.shtml
fractal suivant courbes 2D courbes 3D surfaces ... fractals COURBE DE SIERPINSKI
Sierpinski's curve, Sierpinskische Kurve
Waclaw Sierpinski La courbe de Sierpinski est une courbe remplissant
Peano
Hilbert
comme le montre les figures suivantes :
Ne pas confondre cette courbe avec la courbe du triangle de Sierpinski
Figure kolam traditionnelle indienne
fractal suivant
courbes 2D courbes 3D ... Jacques MANDONNET

84. Collected Works In Mathematics And Statistics
Carl Ludwig Siegel, waclaw sierpinski, Thoralf Skolem, HJS Smith sierpinski,waclaw, 18821969, Oeuvres choisies, 3, QA 3 S57 1974, Killam
http://www.mathstat.dal.ca/~dilcher/collwks.html
Collected Works in Mathematics and Statistics
This is a list of Mathematics and Statistics collected works that can be found at Dalhousie University and at other Halifax universities. The vast majority of these works are located in the Killam Library on the Dalhousie campus. A guide to other locations is given at the end of this list. If a title is owned by both Dalhousie and another university, only the Dalhousie site is listed. For all locations, and for full bibliographic details, see the NOVANET library catalogue This list was compiled, and the collection is being enlarged, with the invaluable help of the Bibliography of Collected Works maintained by the Cornell University Mathematics Library. The thumbnail sketches of mathematicians were taken from the MacTutor History of Mathematics Archive at the University of St. Andrews. For correction, comments, or questions, write to Karl Dilcher ( dilcher@mscs.dal.ca You can scroll through this list, or jump to the beginning of the letter:
A B C D ... X-Y-Z
A
[On to B] [Back to Top]
N.H. Abel

85. Sierpinski Fractals
There are quite a lot of fractals named after waclaw sierpinski, a Polishmathematician who lived from 1882 to 1969. These include the sierpinski Triangle,
http://www.student.kuleuven.ac.be/~m0216922/CG/sierpinski.html
Lode's Computer Graphics Tutorial
Sierpinski Fractals
Table of Contents
  • Introduction Sierpinski Triangle
    Introduction
    There are quite a lot of fractals named after Waclaw Sierpinski, a Polish mathematician who lived from 1882 to 1969.
    These include the Sierpinski Triangle, the Sierpinski Carpet, the Sierpinski Pyramid (the 3D version of the Sierpinski Triangle) and the Sierpinski Cube (the 3D version of the Sierpinski Carpet). The 2D figures will be described here.
    Sierpinski Triangle
    The Sierpinski Triangle, also called Sierpinski Gasket and Sierpinski Sieve, can be drawn by hand as follows:
    Start with a single triangle. This is the only triangle in this direction, all the others will be upside down:
    Inside this triangle, draw a smaller upside down triangle. It's corners should be exactly in the centers of the sides of the large triangle:
    Now, draw 3 smaller triangles in each of the 3 triangles that are pointing upwards, again with the corners in the centers of the sides of the triangles that point upwards:
    Now there are 9 triangles pointing upwards. In each of these 9, draw again smaller upside down triangles:

86. Math Trek: A Remarkable Dearth Of Primes, Science News Online, Jan. 11, 2003
In 1960, Polish mathematician waclaw sierpinski (1882–1969) proved that thereare infinitely many odd integers k such that k times 2n + 1 is never prime for
http://www.sciencenews.org/articles/20030111/mathtrek.asp

Science News
Books.
Subscribe to
Science News ...
Science News for Kids
Math Trek
A Remarkable Dearth of Primes
Food for Thought
The Shocking Science of Tender Poultry
Science Safari
Health on the Net
TimeLine
70 Years Ago in
Science News
Science News
e-LETTER. ...
Week of Jan. 11, 2003; Vol. 163, No. 2
A Remarkable Dearth of Primes
Ivars Peterson The pursuit of prime numbers—integers evenly divisible only by themselves and 1—can lead to all sorts of curious results and unexpected patterns. In some instances, you may even encounter a mysterious absence of primes. In 1960, Polish mathematician Waclaw Sierpinski (1882–1969) proved that there are infinitely many odd integers k such that k times 2 n + 1 is never prime for all values of n greater than or equal to 1. A multiplier k with this property is called a Sierpinski number That's a strange result. There appears to be no obvious reason why these particular expressions never yield a prime. After all, formulas of the form m times 2 n + 1 nearly always eventually produce a prime, so it's not unreasonable to expect that all such expressions would. Nonetheless, exceptions do occur, putting Sierpinski numbers in the research spotlight. In 1962, John Selfridge discovered what remains the smallest known Sierpinski number

87. Coxeter Library Monograph Holdings
sierpinski, waclaw Hypothese Du Contine 2nd ed. Struik, Dirk J. Differential GeometryTodd, JA Projective and Analytical Geometry Van Der Waerden,
http://www.math.yorku.ca/Library/Collect.html
Coxeter Library: Monograph and other holdings
Collections
Coxeter Collection
Pounder Collection
M. Shimrat Collection
This portion of this site is still under construction.
G. Sieburth Collection
Wittenberg Collection
Miscellaneous other titles
This collection is only partially catalogued. ICM: Actes du congres international des mathematiciens, Nice 1970, 3 volumes. Donated by M. Muldoon Proceedings of the International Congress of Mathematicians, Vancouver 1974, 2 volumes. Donated by M. Muldoon Equadiff: Equadiff 3 - Proceedings of the Czechoslovak conference on differential equations and their applications, Brno 1972 Donated by M. Muldoon Equadiff 6 - Proceedings of the international conference on differential equations and their applications, Brno 1985 Donated by M. Muldoon Main Menu

88. Probably Almost All Mathematicians Working Today, If They Trace
sierpinski, waclaw Steinhaus, Wladyslaw Hugo Dyonizy Voronoy, Georgy FedoseevichWeigel, Erhard Wichmannshausen, Johann Christoph Zaremba, Stanislaw
http://www.math.technion.ac.il/~mcwikel/genealogy/gen-0.htm
Probably almost all mathematicians working today, if they trace back to find who were their teachers and the teachers of their teachers, and so on, will find that they are the "descendants" of a number of very famous mathematicians. In my case I found that, via my splendid Ph.D. supervisor Yoram Sagher, I am the "descendant" of, among others, Jacob and Johann Bernoulli, Chebyshev, Darboux, Dirichlet, Euler, Fourier, Gauss, Hilbert, Klein, Lagrange, Leibniz, Markov, Picard, Poisson, Sierpinski, Steinhaus, and Zygmund. My mathematical "genealogy" is shown in five files. (Several files are needed because some of my "ancestors" had two Ph.D. supervisors.) Just click on each number to go to the corresponding file. I obtained the information in these files from the mathematical genealogy website.
http://www.genealogy.math.ndsu.nodak.edu

or its "mirror", which currently works better, at
http://www.genealogy.ams.org
More information about my teacher and my teacher's teacher's (where "teacher" means supervisor for Ph.D.) etc. and their theses can be found via this website. In these files, the year when, and city or university where a mathematician obtained his doctoral degree is written under his name, if these are known. A number in square brackets [N] next to the name of some mathematician where N=1,2,3,4 or 5, means that by clicking on that "[N]" you can move to the file which contains details of the mathematical "ancestry" of that mathematician.

89. My Favorite Books By Shyam Sunder Gupta
55 sierpinski, waclaw and Schinzel, Andrzej. Elementary Theory of Numbers, 2nd ed.Amsterdam, Netherlands NorthHolland,1988. 513 p.
http://www.shyamsundergupta.com/referencebooks.htm
My Favorite Books [1] Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987. [2] Beck, Anatole; Bleicher, Michael N.; and Crowe, Donald W. Excursions into Mathematics, the Millennium Edition. Natick, MA: AK Peters, 2000. 499 p. [3] Beiler, Albert H. Recreations in the Theory of Numbers. New York: Dover, 1966. [4] Bressoud, D. Factorization and Primality Testing. New York: Springer-Verlag, 1989. [5] Carroll, Lewis. Pillow Problems and A Tangles Tale. New York: Dover, 1958. [6] Cohen, Henri. Advanced Topics in Computational Number Theory. New York: Springer-Verlag, 2000. 578 p. [7] Cohen, Henri. A Course in Computational Algebraic Number Theory, 3rd. corr. ed. New York: Springer-Verlag, 1996. 534 p. [8] Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 33-38, 1996. [9] Crandall, Richard and Pomerance, Carl. Prime Numbers. New York: Springer-Verlag, 2001. 352 p. [10] Davenport, Harold. The Higher Arithmetic: An Introduction to the Theory of Numbers, 6th ed. Cambridge, England: Cambridge University Press, 1992. 217 p. [11] Bressoud, David M. and Wagon, Stan.

90. Dolls
waclaw sierpinski (18821969) was a prolific Polish mathematician specialized innumber theory, who created and studied several self-similar patterns and
http://odur.let.rug.nl/~koster/dolls.htm
Self-similar structures The intriguing pattern on this picture is a floor mosaic found in the cathedral of Anagni (Italy). The cathedral and the floor were constructed in the year 1104 (information provided by Nicoletta Sala It is a spectacular early example of what is known in mathematics as an iterative function system, a function that can be recursively iterated (repeated) to create fractal -like structures. The most important property of these functions is that they create self-similar structures, i.e., structures with parts that have the same form as the entire structure. On the picture, you see that the biggest triangles contain the next biggest triangles, surrounded by three triangles of the same kind, containing the next biggest triangle, etc. This process can be infinitely repeated. If you find such structures and ideas complicated, just consider the following picture, which makes it all clear (with thanks to BU's math department): This picture shows how the triangle patterns, so-called Sierpinski triangles, are generated. There are even web sites with Java applets, which allow you to interactively generate these patterns Waclaw Sierpinski (1882-1969) was a prolific Polish mathematician specialized in number theory, who created and studied several self-similar patterns and the functions generating them. The triangles named after him are the most famous example. Fascinating as they are, Sierpinski triangles received much attention during the last few decades, thanks to the world-wide attention for

91. Buch.de - Bücher - General Topology - Wacaw Sierpinski; Waclaw Sierpinsky
waclaw Sierpinsky Besorgungstitel versandfertigin 1 bis 2 Wochen EUR 12,95.
http://www.buch.de/buch/03351/358_general_topology.html
kontakt hilfe start buch ... preis-hits artikel suchen: Titel Autor ISBN profisuche
buch
Empfehlungen
General Topology
von Wacaw Sierpinski Waclaw Sierpinsky Besorgungstitel: versandfertig in 1 bis 2 Wochen
EUR
  • ISBN:
  • Erschienen bei: Dover Pubn Inc
  • Erscheinungstermin:
  • Einband: kartoniert/broschiert
  • Seiten:
  • Gewicht: 331 g

Weitere Infos...

Mehr von:
Beschreibung
Alle Preisangaben inklusive gesetzlicher Umsatzsteuer. agb unser service impressum datenschutz ... toplinks buch.de internetstores AG
info@buch.de

92. Waclaw Sierpinski Université Montpellier II
waclaw sierpinski waclawsierpinski (1882-1969). Cette image et la biographie complète en anglais résident
http://ens.math.univ-montp2.fr/SPIP/article.php3?id_article=1815

93. Sierpinski
des nombres (1912), waclaw sierpinski (Varsovie 1882 - Varsovie 1969)
http://orochoir.club.fr/Timbres/tsierpin.htm
Waclaw SIERPINSKI Mathématicien polonais. Il reçu son doctorat en 1908, et devint professeur à l'université de Lvov. Il y consacre alors ses recherches à la théorie des nombres. Après la première guerre mondiale, il obtient en 1919 un poste à l'université de Varsovie où il y restera jusqu'à sa mort. Entre temps, il aura écrit plus de 700 articles et 50 livres dont "La théorie des nombres irrationnels" (1910), "La théorie des nombres" (1912), ... Waclaw SIERPINSKI
(Varsovie 1882 - Varsovie 1969)
Le triangle de Sierpinski (appelé aussi tamis de Sierpinski) :
C'est une figure fractale comme il en existe beaucoup d'autres. Rappelons qu'une image fractale est obtenue en partant d'un dessin plus ou moins compliqué et en lui appliquant une certaine transformation géométrique qui lui ajoute une complexité. On recommence alors à appliquer la même tranformation au nouveau dessin obtenu et ainsi de suite une infinité de fois.
Le terme de 'fractale' a été donné par le mathématicien français Benoît Mandelbrot en 1975. De nos jours, l'étude (qui n'est pas chose facile) et la représentation d'une fractale sont simplifiées grâce aux ordinateurs. On peut ainsi dessiner une nouvelle fractale rapidement en ne modifiant que quelques paramètres. Cela n'a cependant pas été le cas de quelques fractales du début du siècle comme le flocon de neige de Von Koch, les ensembles de Julia, le triangle de Sierpinski (en 1915) ...

94. Enciclopedia :: 100cia.com
Translate this page waclaw sierpinski. (En este momento no hay texto en esta p¡gina. Para iniciarel art­culo, click editar esta p¡gina (http//es.wikipedia.
http://100cia.com/enciclopedia/Waclaw_Sierpinski
Portada Artículos favoritos
Vea sus documentos y artículos favoritos pulsando aquí No hay artículos favoritos todavía. documentos sin leer:
Siguiente doc sin leer
Borrar los docs leídos Borrar todos los docs
¡Webmaster!
¿Quieres tener los contenidos de 100cia.com en tu página? Pulsa aquí
Buscar: en Google en noticias en Enciclopedia Estás en: 100cia.com > Enciclopedia Waclaw Sierpinski (En este momento no hay texto en esta p¡gina. Para iniciar el art­culo, click editar esta p¡gina http://es.wikipedia.orgWaclaw_Sierpinski Información de Wikipedia (Licencia de uso GFDL) e Internet
¿Sabías que Benito Jerónimo Feijoo(1676-1764) dijo...?
Los más pausibles raciocinios en materia de física, no tocan a la naturaleza en el pelo de la ropa, si no van ligados a las observaciones de la experiencia.
Traducciones
Acerca de

Sync.es
Webs amigas: AstroRED CanalGame DVDenlared

95. Mandelbrot Receives Multiple Honors In Poland And Italy
waclaw sierpinski (18821969), like Mandelbrot a native of Warsaw, was known formajor contributions to abstract mathematics and for the creation around
http://www.yale.edu/opa/newsr/05-08-03-01.all.html
@import "/opa/code/opa_base.css"; @import "/opa/code/opa_newsr2.css"; OPA Home Yale Home Contact Us Search OPA:
OPA Home
Media Information MEDIA INFORMATION NEWS RELEASE
PRESS CONTACT
Janet Rettig Emanuel
Mandelbrot Receives Multiple Honors in Poland and Italy
Benoit Mandelbrot New Haven, Conn. Benoit Mandelbrot , Sterling Professor of Mathematical Sciences , Emeritus, at Yale University has been named the 2005 recipient of the prestigious Sierpinski Prize, awarded jointly since 1974 by the Polish Mathematical Society and the University of Warsaw. On the way to Warsaw, Mandelbrot lectured at the Adam Mickiewicz University in Poznan, Poland, which granted him the first medal named after an early Sierpinski medalist, the great Polish mathematician Wladislaw Orlicz. Earlier this year, Mandelbrot was awarded the honor of Doctor in Civil Engineering by the Technical University (Politecnico) in Torino, Italy, at the International Congress on Fracture. He was specifically cited for the practical value of fractals for providing the first quantitative measure of the roughness of metal and glass fractures. FOR IMMEDIATE RELEASE: August 3, 2005

96. Fundamenta Mathematicae - Contents Of Volume 35
Sur la division des types ordinaux waclaw sierpinski Fund. Math. 35 (1948), 112 Sur les translations des ensembles lineaires waclaw sierpinski
http://journals.impan.gov.pl/cgi-bin/shvold?fm35

97. Fundamenta Mathematicae - Contents Of Volume 34
Translate this page Sur un theoreme de M. Tarski concernant les alephs waclaw sierpinski Fund. Math . Deux theoremes sur les familles de transformations waclaw sierpinski
http://journals.impan.gov.pl/cgi-bin/shvold?fm34

98. Fractales
Translate this page waclaw sierpinski, o grande matemático polaco estava preocupado por ter perdido El matemático polaco waclaw sierpinski introdujo este fractal en 1919.
http://matap.dmae.upm.es/cursofractales/capitulo1/3.html
Waclaw Sierpinski (1882-1969)
autosimilares autosimilar. n piezas autosimilares que aumentadas en un factor 2 n nos devuelven la figura inicial. Este tipo de autosimilaridad a todas las escalas es el sello identificativo de un fractal. las antenas fractales
Ejercicio 3.1:
Ejercicio 3.2
Ejercicio 3.3:

Carlos Fleitas

99. Stanislaw M. Ulam Papers, American Philosophical Society
Ulam was honored with such awards as the sierpinski Medal, Seaborg, GlennTheodore, 1912; Segrè, Emilio; sierpinski, waclaw, 1882-1969; Stein, Myron
http://www.amphilsoc.org/library/mole/u/ulam.htm
Stanislaw M. Ulam Papers
(36 linear feet) Ms. Coll. 54 American Philosophical Society 105 South Fifth Street * Philadelphia, PA 19106-3386 Table of contents Abstract A gifted mathematician, Polish-born Stanislaw Ulam made contributions to set theory, topology, mathematical logic, and number theory, but is most widely remembered for his work in fostering the technical development of thermonuclear weapons. He was associated with Los Alamos Scientific Laboratories for most of the years between 1943 and 1965, and thereafter with the University of Colorado. These papers include personal and professional correspondence, manuscripts of both published and unpublished works, and memorabilia.
  • Background note Administrative information Background note Stanislaw Ulam Stanislaw Ulam was gifted mathematician who, during the course of his career, made significant contributions to set theory, topology, ergodic theory, probability, cellular automata theory, the study of nonlinear processes, the function of real variables, mathematical logic, and number theory. Perhaps his greatest achievement was the development of the Monte Carlo method for solving complex mathematical problems by electronic random sampling, but he made equally noteworthy contributions in hydrodynamics (three-dimensional fluid flow), the development of nuclear propulsion for space flight (Project Orion), and in fields as disparate as physics, biology, and astronomy. Yet despite the breadth of his scholarship, Ulam is most often remembered for the central role he played in the early development of the American hydrogen bomb.

100. Allmath.com - Math Site For Kids! Home Of Flashcards, Math
sierpinski, Wac lstrok;aw. serpinskee. (18821969). Mathematician, born inWarsaw, Poland. He studied at Warsaw University, where he became professor of
http://www.allmath.com/biosearch.php?QMeth=ID&ID=34864

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 5     81-100 of 107    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

free hit counter