Geometry.Net - the online learning center
Home  - Scientists - Schwarzschild Karl
e99.com Bookstore
  
Images 
Newsgroups
Page 6     101-106 of 106    Back | 1  | 2  | 3  | 4  | 5  | 6 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Schwarzschild Karl:     more books (22)
  1. Red Prussian: Life and Legend of Karl Marx by Leopold Schwarzschild, 1986-04
  2. Gesammelte Werke / Collected Works: Volume 2 (German and English Edition) (v. 2) by Karl Schwarzschild, 1992-08-10
  3. Gesammelte Werke/Collected Works (Gesammelte Werke - Collected Works) by Karl Schwarzschild, 1992-12
  4. Die Poincarésche Theorie Des Gleichgewichts Einer Homogenen Rotierenden Flüssigkeitsmasse (German Edition) by Karl Schwarzschild, 2010-03-31
  5. Die Poincaresche Theorie Des Gleichgewichts: Einer Homogenen Rotierenden Flussigkeitsmasse (1897) (German Edition) by Karl Schwarzschild, 2010-05-23
  6. Karl Marx; the Red Prussian (The Universal library) by Leopold Schwarzschild, 1964
  7. People From Hesse-Nassau: Theodor W. Adorno, Otto Hahn, Paul Hindemith, Hans-Georg Gadamer, Karl Schwarzschild, Leo Strauss, Hans Mommsen
  8. Karl Schwarzschild. by Karl (1873-1916)] PARKHURST, J.A. [SCHWARZSCHILD, 1916-01-01
  9. University of Strasbourg Alumni: Paul Ehrlich, Klemens Wenzel, Prince Von Metternich, Karl Schwarzschild, Johann Gottlob Schneider
  10. Astrophysiker: Stephen Hawking, Karl Schwarzschild, Hannes Alfvén, Harald Lesch, Thomas Gold, Walter Baade, Jacques Vallée, Erich Jantsch (German Edition)
  11. Dem Andenken Karl Schwarzschild. Reden, gehalten am Sarge anlässlich der Trauerfeiern in Potsdam und Göttingen. by Karl (1873-1916)] RUNGE, Carl David Tolmé, et al. [SCHWARZSCHILD, 1916-01-01
  12. Karl Schwarzschild Observatory
  13. Gesammelte Werke / Collected Works: Volumes 1-3 (German and English Edition) (Vol 1-3) by Karl Schwarzschild, 1998-10-15
  14. Die Poincaresche Theorie Des Gleichgewichts: Einer Homogenen Rotierenden Flussigkeitsmasse (1897) (German Edition) by Karl Schwarzschild, 2010-09-10

101. Introduction: The History Of Black Holes
In 1916, the German astronomer karl Schwarzchild (see photo on right) figuredout just how small a star would need to become. According to Schwarzchild
http://library.thinkquest.org/10148/long4.shtml
Introduction
The History of Black Holes
Albert Einstein's general theory of relativity proved that if gravity could become strong enough, it would rob light of all its energy. For gravity to become this strong, it would have to be an extremely dense object. It would have to have an extremely large mass in a very small space. In 1916, the German astronomer Karl Schwarzchild (see photo on right) figured out just how small a star would need to become. According to Schwarzchild, a star the size of our Sun (866,000 miles or 1,394,00 kilometers in diameter) would have to shrink to less than four miles (six kilometers) wide. This would be like shrinking the largest mountain to the size of a butterfly.
Photo by Robert Bein, Courtesy AIP Emilio Segrè Visual Archives If the Sun were the size of a large mountain, when collapsed into a black hole, it would shrink to the size of a small butterfly. And yet, it would still weigh as much as the original mountain! Can stars become this small? In 1939, the American physicists J. Robert Oppenheimer and Hartland S. Snyder discovered that this is possible only if the star is much larger than our Sun. For most of their lives, stars remain a constant size because they have a balance of forces: Heat made by burning fuel pushes the star out, and the effect of gravity pulls it in. After billions of years, when the star has used up all of its fuel, it collapses under its own weight.

102. Andreas Müller - Schwarze Löcher - Schwarzschild-Lösung

http://www.mpe.mpg.de/~amueller/astro_sl_schw.html
Das dunkelste Geheimnis der Gravitation
Massenskala
Akkretion - Materie am Abgrund

Verbogenes Licht - Kerr Ray Tracing

Thermodynamik und Hawking-Strahlung
...
Literaturhinweise

Druckversion dieses Abschnitts pdf
Druckversion des ganzen Artikels pdf
Im gleichen Jahr, in dem Albert Einstein die (ART, engl. General Relativity Vakuumfall , also verschwindenden Energie-Impuls-Tensor Feldgleichungen erschienen ihm zu kompliziert. Der deutsche Astronom Karl Schwarzschild . Heute kennt man diese Raumzeit unter dem Begriff . Sie beschreibt das relativistische Gravitationsfeld eines Massenpunkts und ist die Metrik M ist ein idealisiertes Gebilde, weil seine gesamte Masse in einem beliebig kleinen Punkt komprimiert ist. Das Schwarze Loch vom Schwarzschild-Typ hat hier eine zentrale, intrinsische . Anhand des Linienelements (Gleichung zu Beginn) ist schnell abzulesen, dass die Metrik statisch und kugelsymmetrisch ist. In Matrixform hat der metrische Tensor der Schwarzschild-Geometrie eine sehr einfache Gestalt und ist wie der metrische Tensor der Minkowski-Metrik r
Nach dem Birkhoff-Theorem Karl Schwarzschild . Dies ist gerade die keine Vakuumraumzeit Vakuum Sternen Zustandsgleichung Sonne zu beschreiben.

103. TLS Astronomical Research
THÜRINGER LANDESSTERNWARTE TAUTENBURG. RESEARCH GROUPS. Recent preprints andpublications 2005 / 2004. Extrasolar Planets
http://www.tls-tautenburg.de/research/research.html
RESEARCH GROUPS
Recent preprints and publications
Extra-solar Planets

Stars
  • Stellar Magnetic Activity
  • Stellar Oscillations
  • Doppler Imaging
  • Search for Nearby Stars

Extragalactic
Young Objects
Other Projects
Solar System
Earlier Publications:
The Annual Report

104. îéìåï îùàáéí - S
The summary for this Hebrew page contains characters that cannot be correctly displayed in this language/character set.
http://www2.yarden.ac.il/bloss/dictionary/default.asp?group=19&view=eng

105. îéìåï îùàáéí - ù
The summary for this Hebrew page contains characters that cannot be correctly displayed in this language/character set.
http://www2.yarden.ac.il/bloss/dictionary/default.asp?group=21&view=

106. ¤Ñ¤å¤p¦Ê¬ì
The summary for this Chinese (Traditional) page contains characters that cannot be correctly displayed in this language/character set.
http://www.phy.cuhk.edu.hk/astroworld/dictionary/dictionary_heavy.html
var i=0; var coloring=new Array(21); coloring[0]="FFEAEA"; coloring[1]="FFF0EA"; coloring[2]="FFF7EA"; coloring[3]="FFFDEA"; coloring[4]="FBFFEA"; coloring[5]="F4FFEA"; coloring[6]="EEFFEA"; coloring[7]="EAFFEC"; coloring[8]="E8FFF0"; coloring[9]="EAFFF9"; coloring[10]="EAFFFF"; coloring[11]="EAF9FF"; coloring[12]="EAF2FF"; coloring[13]="EAECFF"; coloring[14]="EEEAFF"; coloring[15]="F4EAFF"; coloring[16]="FBEAFF"; coloring[17]="FFEAFD"; coloring[18]="FFEAF7"; coloring[19]="FFEAF0"; coloring[20]="FFEAEB";
¤Ñ¤å¤p¦Ê¬ì
Active Galaxy (¬¡ÅD¬P¨t) Association (¬P¨ó) Barred Spiral Galaxy (´Î±Û¬P¨t) Disk Component (»È½L³¡¥÷) Double-Lobed Radio Source (Âù¤®g¹q·½) Dwarf Elliptical Galaxy (¸G¾ò¶ê¬P¨t) Elliptical Galaxy (¾ò¶ê¬P¨t) Event Horizon (¨Æ¥óªÆ¬É) Gravitational Redshift (­«¤O¬õ²¾) Halo (»È·w) Inner Event Horizon (¤º¨Æ¥óªÆ¬É) Irregular Galaxy (¤£³W«h¬P¨t) Local Group (¥»¬P¨t¹Î) Milky Way Galaxy (»Èªe¨t) Outer Event Horizon (¥~¨Æ¥óªÆ¬É) Seyfert Galaxy (¶ë¦ò¯S¬P¨t) Spiral Arm (±ÛÁu) Spiral Galaxy (±Û´õ¬P¨t) Stellar Population (¬P±Ú) Supercluster (¶W¬P¨t¹Î)
¤£³W«h¬P¨t
(Irregular Galaxy) ¤j³Á­õ­Û¬P¨t (Large Magellanic Cloud) »P ¤p³Á­õ­Û¬P¨t (Small Magellanic Cloud) »P»Èªe¨tªº¶ZÂ÷«Üªñ¡C ¤º¨Æ¥óªÆ¬É (Inner Event Horizon) ¦b¦¹ä¬É¤º¨S¦³¥ô¦óªF¦è¯à°÷°k²æ¡C ¥~¨Æ¥óªÆ¬É (Outer Event Horizon) ¥»¬P¨t¹Î (Local Group) ¥P¤k®y¬P¨t ¡A ·à¤l®y I ¬P¨t ©M ¤j³Á­õ­Û¶³ ) ªº¬P¨t¸s¡C ¼w°ê¤Ñ¤å¾Ç®a©Mª«²z¾Ç®a ¥v¥Ë¦è ¤¤¤l²¨ÖÀ£¤O (neutron degeneracy pressure) ¥ç¤£¯à¹ï§Ü­«¤O¡A¶W¶V®Ö¤lª«½èªº±K«×¡A±K«×±µªñµL­­¤j¡C¤£¦ÛÂ઺«í¬P³Ì«á¦¬ÁY¦¨¬°¥v¥Ë¦è©_ÂI (Schwarzschild singularity)¡C

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 6     101-106 of 106    Back | 1  | 2  | 3  | 4  | 5  | 6 

free hit counter