Geometry.Net - the online learning center
Home  - Scientists - Schooten Frans Van
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 95    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Schooten Frans Van:     more detail
  1. Geometria A Renato Descartes Anno 1637 Gallice Edita (1683) (Latin Edition) by Rene Descartes, Florimond De Beaune, et all 2010-09-10
  2. People From Leiden: Jan Van Goyen, Herman Boerhaave, Frans Van Schooten, Jan Bake, Rembrandt, Rodney Glunder, Geertgen Tot Sint Jans
  3. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2009-07-17
  4. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2010-09-10
  5. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2010-09-10
  6. Geometria A Renato Descartes Anno 1637 Gallice Edita (1683) (Latin Edition) by Rene Descartes, Florimond De Beaune, et all 2010-09-10
  7. 1615 Births: Pope Innocent Xii, Daniel Schultz, Frans Van Schooten, Nicolas Fouquet, Richard Baxter, Dara Shikoh, Salvator Rosa
  8. 1660 Deaths: Diego Velázquez, Charles X Gustav of Sweden, Thomas Harrison, Frans Van Schooten, Vincent de Paul, Thomas Welles, Gaston
  9. Leiden University Faculty: Albert Einstein, Heike Kamerlingh Onnes, Hendrik Lorentz, Paul Ehrenfest, Herman Boerhaave, Frans Van Schooten

41. SCHOOTEN, Floris Gerritsz. Van
schooten, Floris Gerritsz. van. Dutch painter (b. ca. 1201*770 True Color 115 Kb. StillLife c. 1640 Panel frans Halsmuseum, Haarlem
http://gallery.euroweb.hu/html/s/schooten/
SCHOOTEN, Floris Gerritsz. van Dutch painter (b. ca. 1590, Haarlem, d. after 1655, Haarlem) Preview Picture Data File Info Comment Breakfast
Oil on panel, 50 x 82 cm
Koninklijk Museum voor Schone Kunsten, Antwerp
True Color
111 Kb
Still-life with Glass, Cheese, Butter and Cake
Oil on panel
Private collection
True Color
115 Kb
Still-Life c. 1640 Panel Frans Halsmuseum, Haarlem True Color 105 Kb To send a postcard from this page please push the button below then select a picture by clicking on it. For other selections please use the search engine or the postcard links. Please send your comments , sign our guestbook and send a postcard Donations for maintaining and developing the Gallery are welcome. © Web Gallery of Art, created by Emil Kren and Daniel Marx.

42. Still-Life By SCHOOTEN, Floris Gerritsz. Van
Page of StillLife by schooten, Floris Gerritsz. van in the Web Gallery of Art, frans Halsmuseum, Haarlem. On a white napkin are various objects,
http://gallery.euroweb.hu/html/s/schooten/still_li.html
SCHOOTEN, Floris Gerritsz. van (b. ca. 1590, Haarlem, d. after 1655, Haarlem)
Still-Life
c. 1640
Panel
Frans Halsmuseum, Haarlem
On a white napkin are various objects, including a Chinese dish with butter, a ham with cloves, a sausage and two cheeses. The colours are sober, the point of view is low and the objects are placed in a diagonal arrangement. Previous Page Please send your comments , sign our guestbook and send a postcard
Donations
for maintaining and developing the Gallery are welcome.
© Web Gallery of Art, created by Emil Kren and Daniel Marx.

43. Lexikon Frans Van Schooten
frans van schooten aus der freien
http://lexikon.freenet.de/Frans_van_Schooten

E-Mail
Mitglieder Community Suche ... Hilfe document.write(''); im Web in freenet.de in Shopping Branchen Lexikon Artikel nach Themen alphabetischer Index Artikel in Kategorien Weitere Themen
Po-Rasur und Zicken- krieg: Olivia Jones mischt das BB-Dorf auf

Noch mehr Sex und Intrigen: Die neuen "Housewives"

œberraschung: Aldi bietet 3-GHz-PC f¼r nur 499 Euro an

Peugeot 20Cup: Doppelter FahrspaŸ ohne Ende
...
Expertenrat: So sollte Ihr Depot aussehen

Sie sind hier: Startseite Lexikon Frans van Schooten
Frans van Schooten
Bild nicht gefunden Frans van Schooten Franciscus Schooten in Leiden Niederlande 29. Mai in Leiden) war ein niederl¤ndischer Mathematiker , der vor allem f¼r die Popularisierung der analytischen Geometrie von Ren© Descartes bekannt ist. Schooten las Descartes's G©om©trie (ein Anhang zu seinem Buch Discours de la m©thode ) bevor es publiziert wurde. Da er es schwer verst¤ndlich fand, ging er nach Frankreich um die Werke anderer Mathematiker der Zeit wie Fran§ois Vi¨te und Pierre de Fermat zu studieren. Nach seiner R¼ckkehr nach Leiden wurde er Professor f¼r Mathematik. Sein bekanntester Sch¼ler war wohl Christiaan Huygens . Seine Kommentare zu G©om©trie waren sehr wichtig, da sie das Werk breiteren Schichten von Mathematikern verst¤ndlich machten. Sie waren daher mitverantwortlich f¼r die Verbreitung der analytischen Geometrie in der Welt. Durch Schootens Arbeit wurde Leiden f¼r eine kurze Periode in der Mitte des

44. Schooten, Dr. E.J. Van (www.onderzoekinformatie.nl)
schooten, Dr. EJ van. Show printerfriendly view Print View switch to nl Examens voor talenvakken (Nederlands, Engels, frans en Duits); Examinering
http://www.onderzoekinformatie.nl/en/oi/nod/onderzoeker/PRS1241641/toon
Login English KNAW Research Information NOD - Dutch Research Database ... Researcher entire www.onderzoekinformatie.nl site fuzzy match
Schooten, Dr. E.J. van
Print View Expertise Eng Methodology; Applied linguistics; Educational research; Foreign and second language acquisition; Dutch as a second language; Literary response; Attitudes towards reading fiction; Measurement of language proficiency and examinations in general; Writing proficiency Expertise NL Methodologie; Toegepaste taalkunde; Onderwijsonderzoek; Nederlands als tweede taal (NT2); Literaire respons; Attitudes ten aanzien van lezen en onderwijs; Taalvaardigheid in eerste en tweede taal; Schrijfvaardigheid; Examens voor talenvakken (Nederlands, Engels, Frans en Duits); Examinering E-mail address E.J.vanSchooten@uva.nl Relation to current research activities
(the most recent research is placed on top) Relation to completed research activities
(the most recent research is placed on top) Classification
Back
... NOD page
Last modified: 17-03-2005 00:00

45. MATH-HISTORY-LIST Archives - March 1999
Date Tue, 23 Mar 1999 083948 0500; Re frans van schooten (79 lines) Date Thu, 25 Mar 1999 013532 +0200; Re frans van schooten (165 lines)
http://www.maa.org/scripts/WA.EXE?A1=ind9903&L=math-history-list

46. Rare Math Books At The University Of Michigan
schooten, frans van, 16501660. 1646 Francisci a schooten De organica conicarum sectionum in plano descriptione, tractatus.
http://www.lib.umich.edu/spec-coll/rick.html
Rare Math Books at the University of Michigan
The University of Michigan Library started with 3707 volumes (purchased for $5000), including Audubon's "The Birds of America" (1827-38). It offered little mathematics and grew slowly. A major improvement came in 1881 when a complete run of Crelle's Journal was donated. Two faculty made important contributions to the mathematics collection. Alexander Ziwet, who was on the faculty from 1898 to 1925, worked to improve the library and contributed a large collection of his own books. Louis C. Karpinski, on the faculty from 1904 to 1948, gathered many rare volumes for the mathematics collection. Another important influence occurred in 1964 when Mathematical Reviews moved to Ann Arbor. Today the mathematics collection at the University of Michigan is one of the best in the world. The collection of rare mathematics books is outstanding. The titles listed below in chronological order were selected by V. Frederick Rickey, of Bowling Green State University, to show to a history of mathematics course taught at Michigan State University by Dan Chazan on March 11, 1996. We would like to thank Peggy Daub, Head of Special Collections and curator of the mathematics collection at the library for her assistance. Euclid 1482 Elementa geometrie Published in Venice by Erhard Ratdolt. Uncatalogued.

47. Earliest Uses Of Grouping Symbols
use of the vinculum above the parts affected was by frans van schooten (c. In van schooten s 1646 edition of Vieta, is used to represent B(D2 + BD).
http://members.aol.com/jeff570/grouping.html
Earliest Uses of Grouping Symbols
Last revision: June 24, 1999 Vinculum below. The first use of the vinculum was in 1484 by Nicolas Chuquet (1445?-1500?) in his Le Triparty en la Science des Nombres. The bar was placed under the parts affected (Cajori vol. 1, pages 101 and 385). Chuquet wrote: The above expression in modern notation is . This use of a vinculum appears to be the earliest use of a grouping symbol of any kind mentioned by Cajori. Vinculum above. According to Cajori, the first use of the vinculum above the parts affected was by Frans van Schooten (c. 1615-1660), who "in editing Vieta's collected works, discarded the parentheses and placed a horizontal bar above the parts affected." In Van Schooten's 1646 edition of Vieta, is used to represent B D BD Ball (page 242) says the vinculum was introduced by Francois Vieta (1540-1603) in 1591. This information may be incorrect. Grouping expressed by letters. In the late fifteenth century and in the sixteenth century various writers used letters or words to indicate grouping. The earliest use of such a device mentioned by Cajori (vol. 1, page 385) is the use of the letter v for vniversale by Luca Paciolo (or Pacioli) (c. 1445 - prob. after 1509) in his

48. HyperbelSchooten
Translate this page Hyperbelzirkel des frans van schooten. Auf dieser Seite wird eine Simulaton des Hyperbelzirkels von frans van schooten (1615-1660) gezeigt.
http://members.aol.com/geometrie11/koorgeom/vhyperb.htm
Hyperbelzirkel des Frans van Schooten
Auf dieser Seite wird eine Simulaton des Hyperbelzirkels von Frans van Schooten (1615-1660) gezeigt. Van Schooten versuchte die bis dahin benutzten Fadenkonstruktionen durch einen stabileren Gelenkmechanismus zu ersetzen, dessen Originalabbildung man in der nebenstehenden Abbildung ansehen kann. Der Punkt A kann in der Simulation frei um C herum bewegt werden, was bei einem realen Gestänge natürlich nicht möglich ist, so dass hier sogar ein Teil des linken Hyperbelastes gezeichnet werden kann, obwohl das mit einem wirklichen Hyperbelzirkel nicht geht. Dies ist der Tribut, den man wegen der Einfachheit des Programmiersystems zahlen muss
Reset durch Eintippen von "r"
Aufgaben
  • Zeichnen Sie zunächst eine Hyperbel durch Ziehen am Punkt D. Verändern Sie dann die Lage des Punktes F und wiederholen Sie die Zeichnung.
  • Welche Lage hat die Gerade LM bezüglich der Hyperbel?
  • Welche Aufgabe hat die Raute im Gelenkmechanismus?
  • Schalten Sie das Koordinatensystem ein und zeigen Sie, dass die Koordinaten von P die Hyperbelgleichung erfüllen. Wie sind hier a und b zu wählen?
  • 49. 1649: Information From Answers.com
    In the year 1649 Mathematics Geometria a Renato Des Cartes ( geometry by René Descartes ) by frans van schooten b.
    http://www.answers.com/topic/1649
    showHide_TellMeAbout2('false'); Arts Business Entertainment Games ... More... On this page: US Literature Wikipedia Mentioned In Or search: - The Web - Images - News - Blogs - Shopping In the year Mathematics Geometria a Renato Des Cartes ("geometry by Ren© Descartes") by Frans van Schooten [b. Leiden, Holland (Netherlands), 1615, d. Leiden, May 29, 1660] translates into Latin and expands Descartes' La g©om©trie. In 1659-61 an expanded two-volume version will appear. This book introduces analytic geometry to scholars all over Europe. Physics Pierre Gassendi's study of Epicurus, Syntagma philosophiae Epicuri, asserts that matter is made up of atoms. See also bce Physics
    American Literature
    Diaries, Journals, and Letters
    • Thomas Mayhew (c. 1621-1657) The Glorious Progress of the Gospel, Amongst the Indians in New England . In this collection of documents gathered by Edward Winslow , Mayhew's letter describes the Indians' voluntarily acceptance of Christianity due to "their noble reason, judgment, and capacitie." The volume is intended to muster parliamentary support for financing Indian missions. Parliament would respond by creating the Society for the Propagation of the Gospel. Jonathan Mitchel : "Letter to His Brother." Mitchel's letter offers spiritual advice to his brother.

    50. ARC :: Floris Gerritsz Van Schooten (1590-1655) :: Page 1 Of 1
    Floris Gerritsz van schooten (b.1590d.1655). Art-works featured on this page include Still-Life frans Halsmuseum, Haarlem, Netherlands Added 6/28/2005
    http://www.artrenewal.org/asp/database/art.asp?aid=5153&order=u

    51. Perfect Number -- From MathWorld
    that Euclid s construction gives all possible even perfect numbers was proposed to Fermat in a 1658 letter from frans van schooten (Dickson 1957, p.
    http://mathworld.wolfram.com/PerfectNumber.html
    INDEX Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics ... Alphabetical Index
    DESTINATIONS About MathWorld About the Author Headline News ... Random Entry
    CONTACT Contribute an Entry Send a Message to the Team
    MATHWORLD - IN PRINT Order book from Amazon Number Theory Special Numbers Divisor-Related Numbers ... Unsolved Problems Perfect Number Perfect numbers are positive integers such that where is the restricted divisor function (i.e., the sum of proper divisors of ), or equivalently where is the divisor function (i.e., the sum of divisors of including itself). For example, the first few perfect numbers are 6, 28, 496, 8128, ... (Sloane's ), since etc. The first few perfect numbers are summarized in the following table together with their corresponding indices (see below). Perfect numbers were deemed to have important numerological properties by the ancients, and were extensively studied by the Greeks, including Euclid Perfect numbers are also intimately connected with a class of numbers known as Mersenne primes , which are prime numbers of the form . This can be demonstrated by considering a perfect number of the form where is prime . By definition of a perfect number Now note that there are special forms for the divisor function for a prime, and

    52. Still-Life By SCHOOTEN, Floris Gerritsz. Van
    Page of StillLife by schooten, Floris Gerritsz. van in the Web Gallery of Art, a searchable image Still-Life. c. 1640 Panel frans Halsmuseum, Haarlem
    http://www.wga.hu/html/s/schooten/still_li.html
    SCHOOTEN, Floris Gerritsz. van (b. ca. 1590, Haarlem, d. after 1655, Haarlem)
    Still-Life
    c. 1640
    Panel
    Frans Halsmuseum, Haarlem
    On a white napkin are various objects, including a Chinese dish with butter, a ham with cloves, a sausage and two cheeses. The colours are sober, the point of view is low and the objects are placed in a diagonal arrangement.

    53. What's New
    CUYCK van MYEROP, frans DELVAUX, Laurent EERTVELT, Andries van ELIAERTS, Jan frans SCHEEMAEKERS, Petrus the Elder schooten, Floris Gerritsz. van
    http://www.wga.hu/whats_4.html
    New Artists
    (November, 2001)
    ADRIAENSSEN, Alexander
    AENVANCK, Theodoor

    BACKER, Jacob de

    BAURSCHEIT, Jan Peter van, the Elder
    ...
    Top

    54. Pythagoras Euclides Euclid Geometrica Meetkonst Moll Wiskunde
    De zoon van frans van schooten de oudere, namelijk frans van schooten de jongere en de leermeester van Christiaan Huygens (19) , vertaalde ´La Geometrie´
    http://www.euronet.nl/users/warnar/demostatistiek/meth/euclides.htm
    Home Dodecaeder Isocaeder Meetbare grootheden Newton-Einstein Pentagon Plato Priemgetal Proklos Pythagoras Sectio aurea Teerlinck Vooght 2004 Warnar Moll. [Down]
    Referenties
    Euclides van Alexandrië
    Euclid, "The Elements", first translation in Dutch by Claas Jansz Vooght and published in 1695, Amsterdam
    Euclides, "De Elementen", voor het eerst in het Nederlands vertaald door Claas Jnsz Vooght en uitgegeven in 1695
    EUCLIDIS
    BEGINSELEN
    der
    MEETKONST,
    Vervaat in 15 Boeken
    Begrijpende de Beginselen, op dewelke de gant-
    sche Wiskonst rust,
    Daarom ook te recht genaamt BEGINSELEN der WISKONST. Eerst in onze nederduytse taal met alle omsightigheid, kort- heyd en klaarheyd opgesteld door Claas Jansz. Vooght Geometra, Geswooren Landmeter en Leermeester, in de Wiskonst, als Stuur- manskonst enz. tot Amsterdam. By Johannes van Keulen, Boek- en Kaart verkoper,by de Nieu-

    55. Jan Frans Van Dael Posters At AllPosters.com
    van Rysselberghe, Theo van San, Joris van Schendel, P. van schooten, Floris van Scoy, Taman Roses, Tulips Poppies Prints By Jan frans van Dael
    http://www.allposters.com/-st/Jan-Frans-Van-Dael-Posters_c28898_s28926_.htm
    Movies Fine Art Music Sports College Vintage Photography
    Top

    Browse V: Stein
    Vadon, Veronique
    Vaillancourt, Chris...
    Valadie, Jean - Bap...
    Valadie, Jean-Baptiste
    Valadier
    Valadon, Suzanne
    Valdes, LeAnnDra D
    Valdez Valdez, Patssi Vale, J. Valente, Carl Valenti Valentin, Oliver Valentin, Wilson Valentina Valentine Valentini Valentini, Michael Valentini, W. Valentini, Walter Valerie, Sjodin Valiquet, Carl Valk, Karin Valle, Della Vallet, L. Vallotton, Felix Valves, Victor Manu... Van Achterberg, Tanja Van Aken, Norman Van Alen, William Van Andenaerd, R. Van Antum, Aert Van Beckum, Sarah Van Beek Van Beek, Randy Van Beers, Jan Van Berckel, David Van Breen, Adam van Brussel, Paul T... Van Campen, Susan H... Van Caspel, Johan G... Van Caulaert, Jean-... Van Chelminski, Jan van Couwencerch, Ch... Van Dael, Jan Frans Van de Bos, Ina Van De Cappelle, Jan van de Velden, Ria Van De Zande Van Delft, Henk Van Den Bogerd, Escha Van Den Eycken, Cha... van der Ast, Baltha... Van Der Hecke, J. van der Leeden Van der Meer Van Der Passe, Crispin Van Der Ven Van Der Wal van der Wal, Onne Van Der Weer, Monica

    56. Pythagorean Theorem And Its Many Proofs
    This dissection is often attributed to the 17th century Dutch mathematician frans van schooten. Frederickson, p. 35 considers it as a hinged variant of
    http://www.cut-the-knot.org/pythagoras/index.shtml
    Username: Password: Sites for teachers
    Sites for parents

    Awards

    Interactive Activities
    ...
    Sites for parents
    Pythagorean Theorem
    Let's build up squares on the sides of a right triangle. Pythagoras' Theorem then claims that the sum of (the areas of) two small squares equals (the area of) the large one. In algebraic terms, a + b = c where c is the hypotenuse while a and b are the sides of the triangle. The theorem is of fundamental importance in the Euclidean Geometry where it serves as a basis for the definition of distance between two points. It's so basic and well known that, I believe, anyone who took geometry classes in high school couldn't fail to remember it long after other math notions got solidly forgotten. I plan to present several geometric proofs of the Pythagorean Theorem. An impetus for this page was provided by a remarkable Java applet written by Jim Morey . This constitutes the first proof on this page. One of my first Java applets was written to illustrate another Euclidean proof. Presently, there are several Java illustrations of various proofs, but the majority have been rendered in plain HTML with simple graphic diagrams.
    Remark
  • The statement of the Theorem was discovered on a Babylonian tablet circa 1900-1600 B.C. Whether Pythagoras (c.560-c.480 B.C.) or someone else from his School was the first to discover its proof can't be claimed with any degree of credibility. Euclid's (c 300 B.C.)
  • 57. Skeptic Report
    frans van schooten and René Descartes) and was “soon convinced of the vanity emptiness of the pretended science of Judicial astrology”.13
    http://www.skepticreport.com/print/newton-p.htm
    Portrait of Isaac Newton
    painted in 1689 by Sir Godfrey Kneller
    (Farleigh House, Farleigh Wallop, Hampshire) Isaac Newton and Astrology
    Witness for the Defence or for the Prosecution?
    by Robert H. van Gent Introduction From times immemorial, astrology has been a determining factor in the decisions and actions of men of all ranks and stations. At the begin of the 17th century, great scientists as Tycho Brahe, Galileo Galilei, Johannes Kepler and Pierre Gassendi – now best remembered for their roles in the development of modern physics and astronomy – all held astrology in high esteem. However, at the end of the 17th century, the scientific community had completely turned away from astrology. For some the subject of derision, others preferred to ignore it completely – so, hardly a single word on astrology, either pro or contra, is to be found in the works of scientists as Christiaan Huygens (1629-1695) or Isaac Newton (1642-1727). However, in the case of Newton, the astrological literature presents a different view and even claims that Newton was in secret an ardent student of astrology. As evidence the following anecdote is often quoted: when the astronomer Edmond Halley (1656-1742), of comet fame, once spoke depreciatively on the subject of astrology, Newton is said to have berated him with the remark: “Sir Halley, I have studied the matter, you have not!”

    58. History Of Statistics-Stigler
    Pp. 517534 in frans van schooten s Exercitationum Mathematicarum. van Rekeningh in Spelen van Geluck. Pp. 485-500 in frans van schooten s Mathematische
    http://www.york.ac.uk/depts/maths/histstat/stiglercontents.htm
    STIGLER, Stephen M.
    The history of statistics
    ISBN 067440341X
    Contents
    Introduction 1
    PART ONE
    The Development of Mathematical Statistics in Astronomy and Geodesy before 1827 9
    1. Least Squares and the Combination of Observations 11 Legendre in 1805
    Cotes's Rule 16
    Tobias Mayer and the Libration of the Moon 16
    Saturn, Jupiter, and Euler 25 Laplace's Rescue of the Solar System 31 Roger Boscovich and the Figure of the Earth 39 Laplace and the Method of Situation 50 Legendre and the Invention of Least Squares 55 2. Probabilists and the Measurement of Uncertainty 62 Jacob Bernoulli 63 De Moivre and the Expanded Binomial 70 Bernoulli's Failure 77 De Moivre's Approximation 78 De Moivre's Deficiency 85 Simpson and Bayes 88 Simpson's Crucial Step toward Error 88 A Bayesian Critique 94 3. Inverse Probability 99 Laplace and Inverse Probability 100 The Choice of Means 105 The Deduction of a Curve of Errors in 1772-1774 109 The Genesis of Inverse Probability 113 Laplace's Memoirs of 1777-1781 117 The Error Curve of 1777 120 Bayes and the Binomial 122 Laplace the Analyst 131 Nonuniform Prior Distributions 135 The Central Limit Theorem 136 4. The Gauss -Laplace Synthesis 139

    59. Mathematical Illustrations
    at the Thomas L. Fisher Rare Book Library of the University of Toronto. It was made from a wood cut, probably one carved by frans van schooten the Younger.
    http://www.math.ubc.ca/~cass/graphics/manual/ellipse.html
    Illustrations This image is taken from a copy of the first edition of Descartes' (appendix to ) located at the Thomas L. Fisher Rare Book Library of the University of Toronto. It was made from a wood cut, probably one carved by Frans van Schooten the Younger.

    60. 'Nederlandse' Planetoiden
    10439 van schooten, 6676 PL, 1960 09 24, Palomar, vHGG, Naar de Leidse wiskundige frans van schooten (ca. 16151660). 10440 van Swinden, 7636 PL, 1960 10 17
    http://www.astronieuws.nl/NL-plan.html
    nr naam voorlopige aanduiding ontdekkingsdatum (jjjj mm dd) ontdekkingsplaats ontdekt door opmerkingen (126 Velleda) Parijs Henry, P. 350 Ornamenta Nice Charlois, A. 'Eerbetoon aan de Hollandse zeeman Hornemann.' 392 Wilhelmina Heidelberg Wolf, M. Waarschijnlijk genoemd naar koningin Wilhelmina (1880-1962). 461 Saskia Heidelberg Wolf, M. Naar Saskia van Uylenburg, vrouw van Rembrandt. 677 Aaltje Heidelberg Kopff, A. Naar de zangeres Aaltje Noordewier Reddingius. (754 Malabar) 1906 UT Heidelberg Kopff, A. Ter herinnering aan de Nederlands-Duitse zoneclipsexpeditie van 1922 naar Kersteiland. 816 Juliana 1916 YV Heidelberg Wolf, M. Waarschijnlijk genoemd naar de latere koningin Juliana (1909-2004). 818 Kapteynia 1916 YZ Heidelberg Wolf M. Naar de sterrenkundige Jacobus Cornelius Kapteyn (1851-1922). 1132 Hollandia Johannesburg Van Gent, H. De Latijnse benaming voor Holland/Nederland. 1133 Lugduna Johannesburg Van Gent, H. De Latijnse benaming voor Leiden: Lugdunum Batavorum. 1165 Imprinetta 1930 HM Johannesburg Van Gent, H. Naar de echtgenote van sterrenkundige H. van Gent. 1226 Golia 1930 HL Johannesburg Van Gent, H.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 95    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter