Geometry.Net - the online learning center
Home  - Scientists - Riccati Vincenzo
e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 92    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Riccati Vincenzo:     more detail
  1. Compendio D'analisi, Volume 2 (Italian Edition) by Vincenzo Riccati, 2010-01-11
  2. De' Principj Della Meccanica Lettere (Italian Edition) by Vincenzo Riccati, Virgilio Cavina, 2010-02-22
  3. Compendio d'analisi: V. 2 by Vincenzo Riccati, 2009-04-27
  4. Compendio d'analisi,: V.1 (Italian Edition) by Vincenzo Riccati, 2009-04-27
  5. Compendio D'analisi, Volume 1 (Italian Edition) by Girolamo Saladini, Vincenzo Riccati, 2010-04-08
  6. Naissance Dans La République de Venise: Clément Xiii, Andrea Palladio, Lorenzo Mascheroni, le Tintoret, Marco Foscarini, Vincenzo Riccati (French Edition)
  7. Compendio d'analisi (Italian Edition) by Vincenzo Riccati, 1775-01-01
  8. De Principj Della Meccanica Lettere (1772) (Italian Edition) by Vincenzo Riccati, Virgilio Cavina, 2009-03-04
  9. De Principj Della Meccanica Lettere (1772) (Italian Edition) by Vincenzo Riccati, Virgilio Cavina, 2010-09-10
  10. De Principj Della Meccanica Lettere (1772) (Italian Edition) by Vincenzo Riccati, Virgilio Cavina, 2010-09-10
  11. Dialogo di Vincenzo Riccati (Italian Edition) by Vincenzo Riccati, 1749-01-01

1. Earliest Uses Of Symbols From Geometry
known use of m for slope appears in Vincenzo Riccati's memoir De XII of the first part of his book Vincentii Riccati Opusculorum ad res
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

2. Riccati_Vincenzo
Biography of Vincenzo Riccati (17071775)
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

3. Math Forum Discussions - Historia-Matematica
Scholarly discussion of the history of mathematics (in a broad sense). To post, subscribe first by completing the membership application.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

4. Notations & Symboles
riccati vincenzo;cotangente (co-tangente) Gunter; curvilignes (coordonnées) Gauss
http://serge.mehl.free.fr/base/notations.html
ChronoMath, une chronologie des MATHÉMATIQUES
Appellations ou Concepts :
  • abscisse : Thomas Corneille Dictionnaire des termes d'Arts et de Sciences (1694), Newton
    Voir abscisse et ordonnée selon d'Alembert affixe (d'un point du plan complexe) : Cauchy algèbre (structure) : Benjamin Peirce (nombre) Abel (courbe) Leibniz analyse fonctionnelle : Paul Lévy (mathématicien français, 1866-1971, élu Acad. sciences 1964) angle orienté : Wessel Möbius anneau : Fraenkel Hilbert argument (d'un nombre complexe) Cauchy bijection Chevalley cardinal (d'un ensemble) Cantor Steinitz compact (espace) : Fréchet complexe (nombre) Gauss conique (courbe algébrique) Descartes Wallis , sections coniques Apollonius de Perge Bolzano Cauchy coordonnées polaires, paramétriques : Jacques Bernoulli corps : Dedekind en allemand, notation K ) et Weber Leibniz d'Alembert courbe gauche : Clairaut cosinus (co-sinus) Gunter cosinus hyperbolique : Riccati Vincenzo cotangente (co-tangente) Gunter curvilignes Gauss cycloïde : Galilée Hipparque Cantor Lagrange ... Leibniz directrice (d'une conique) : Pappus distance (dans un espace abstrait) : distingué (sous-groupe) Galois division euclidienne : Bourbaki Pearson ellipse, parabole, hyperbole :
  • 5. Biografia De Riccati, Vincenzo
    Reportajes. Los protagonistas de la actualidad. Riccati, Vincenzo (Castelfranco, 1707Bolonia, 1775) Matem tico italiano.
    http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

    6. Syllogismos - Riccati Vincenzo
    Translate this page A treatise by Vincenzo Riccati (1752). Un trattato di Vincenzo Riccati (1752) riccati vincenzo (1707-1775). In this work we can find a method based upon
    http://www.syllogismos.it/libristorici/riccativincenzo.htm
    History and Epistemology for Mathematics Education Storia ed Epistemologia per la Didattica della Matematica A treatise by Vincenzo Riccati (1752) Un trattato di Vincenzo Riccati (1752) Riccati, V. (1752), De usu motus tractori in constructione Aequationum Differentialium Commentarius , Lelio della Volpe, Bologna RICCATI Vincenzo (1707-1775) In this work we can find a method based upon a physical model, suggested (but not proved) by Clairaut (1713-1765) in 1742: so Vincenzo Riccati did not try to obtain general methods to solve differential equations: he considered a particular class of problems and examinated such equations from an unusual point of wiew. In particular, the Author proposes the differential equation: “formula, de qua saepe locuti sumus” ( Commentarius , p. 63) in “Caput Octavum. Construuntur omnes aequationes differentiales, in quibus nulla inest summatoria ex duabus indeterminatis coalescens” ( Commentarius , pp. 62-72). Riccati suggests: If we differentiate, we have: and if we remember the given equation we can write: Finally we put: so that: “Analysis hujusmodi constructionem nos docet” ( Commentarius , p. 64): let KG =

    7. De Principi Della Meccanica Lettere Di Vincenzo Riccati Al P .
    De Principi Della Meccanica Lettere di Vincenzo Riccati al P. Virgilio Cavina, Professore delle Matematiche in Cagliari di Sardegna. Riccati
    http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

    8. Syllogismos - Riccati Vincenzo
    Translate this page Storia ed Epistemologia per la Didattica della Matematica. A Letter by VincenzoRiccati (1775). Una Lettera di Vincenzo Riccati (1775)
    http://www.syllogismos.it/libristorici/riccativcuneo.htm
    History and Epistemology for Mathematics Education Storia ed Epistemologia per la Didattica della Matematica A Letter by Vincenzo Riccati (1775) Una Lettera di Vincenzo Riccati (1775) Riccati, V. (1775?), Del Cuneo, Lettera Postuma… al Signor Arciprete Gian Battista Nicolai, Professore d’Analisi nello Studio di Padova RICCATI Vincenzo (1707-1775) p. 1 (n. n.) p. 3 p. 6 p. 9 p. 12 p. 15 p. 18 p. 21 p. 24 p. 4 p. 7 p. 10 p. 13 p. 16 p. 19 p. 22 figure p. 5 p. 8 p. 11 p. 14 p. 17 p. 20 p. 23 See moreover: Si veda inoltre: Suzzi, G. Disquisitiones mathematicae , Lovisa, Venezia. Syllogismos.it History and Epistemology for Mathematics Education (Giorgio T. Bagni, Editor) Back to Library/Biblioteca Back to Syllogismos.it Main Page Torna a Syllogismos.it Pagina Principale

    9. Syllogismos - Riccati Vincenzo
    in constructione Aequationum Differentialium Commentarius, Lelio della Volpe, Bologna. riccati vincenzo (17071775) In this work we can find a
    http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

    10. 76. Ritratto Dell'abate Vincenzo Riccati.
    (primi decenni del XVII secolo) Vai alle Opere dell' Artista 76. Ritratto dell'abate Vincenzo Riccati. Olio su tela; 45 3 x 37 cm
    http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

    11. Riccati, Vincenzo., De Principi Della Meccanica Lettere Di Vincenzo
    Riccati, Vincenzo. De Principi Della Meccanica Lettere di Vincenzo Riccati al P. Virgilio Cavina, Professore delle Matematiche in Cagliari
    http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

    12. RICCATI Vincenzo.( 1709-1790 ), De' Principi Della Meccanica.
    Paolo Pampaloni Antiquarian Bookseller riccati vincenzo.( 17091790 ) De' principi della meccanica. Venezia Coleti, 1772
    http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

    13. References For Riccati_Vincenzo
    References for the biography of Vincenzo Riccati
    http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

    14. Vincenzo Riccati - Wikipédia
    Translate this page Vincenzo Riccati est un mathématicien italien jésuite né en 1707 à CastelfrancoVeneto et mort en 1775 à Trévise . Il est le fils du mathématicien et
    http://fr.wikipedia.org/wiki/Vincenzo_Riccati
    Wikim©dia a besoin de votre aide
    Vincenzo Riccati
    Un article de Wikip©dia, l'encyclop©die libre.
    Vincenzo Riccati est un math©maticien italien j©suite n© en 1707   Castelfranco Veneto et mort en 1775   Tr©vise . Il est le fils du math©maticien et physicien Jacopo Riccati dont il a publi© et prolong© les oeuvres. Il est particuli¨rement connu pour son travail sur les ©quations diff©rentielles ( ©quation de Riccati ) et sa m©thode de r©solution par tractoire modifier
    Vie
    A dix ans, il entre au Coll¨ge San Francesco Saverio de Bologne, dirig© par la compagnie de J©sus, et suit les cours du math©maticien Luigi Marchenti. En 1727, il entre comme novice   la compagnie de J©sus. De 1727   1739, il poursuit des ©tudes de th©ologie tout en enseignant le latin et l'italien. En 1739, il entame une carri¨re d'enseignant en math©matique au Coll¨ge de Bologne. Il reste   Bologne jusqu'en 1773, date   laquelle la compagnie de J©sus y est supprim©e. Il s©journe alors   Tr©vise o¹ il meurt en 1775. modifier
    Œuvre
    Le principal domaine de recherche de Vicenzo Riccati fut l'analyse math©matique, et plus pr©cis©ment la r©solution des

    15. Parabolic Hyperbolic Spherical Pythagorean Theorem Pythagoras Theory Of Relativi
    Vincenzo Riccati Lambert Beltrami, Poncelet Gauss Lobachevskii riccati vincenzo.Rieman. Robb Alfred. S. Saccheri. Sommerfeld Arnold. T. Taylor, Edwin
    http://www12.0038.net/~soroban-math/engl.html
    CONTENTS SOROBAN Number ZERO PURNA ... New Mechanics Relativity Arithmetic
    Pythagorean

    Theorem
    parabolic
    hyperbolic
    spherical Trigonometry spherical
    plane
    hyperbolic LINK LIST Japanese English (PDF) francais German Chinese SOROBAN MATH (TM)
    FEELING TECHNOLOGY INSTITUTE (TM) update
    July.19.2758 opened
    May.8.2755
    How to study Mathematics with Soroban My idea is..... What is zero? What is purna? What is one? What is negative number? ... Exercise Purna is a word of Vedic Mathematics. Purna is not infinity. Soroban is a Japanese abacus. ZERO and PURNA European people could not discover the idea of zero and purna. European science has a structure like the Tower. European people invented a slide rule. The Slide Rule is good to study three geometry systems. Hindu (Indian) people discovered the idea of zero and purna. Hindu (Indian) science has a structure like the Cosmos. Japanese people developed soroban mathematics. Japanese science has a structure like the Ether. Now, it is important to study the idea of purna for European science and philosophy. This is equal to ZEN problem "What is 'Mu'?".

    16. Universitàdi Bologna - Archivio Storico
    VI Translate this page 683 - Vincenzo Maria Coronelli 684 - Vincenzo Riccati 685 - Vinci Clodumar 686 -Vindelici 687 - Vindeliker 688 - Vindemiatrix 689 - Vindikationslage
    http://www.archiviostorico.unibo.it/template/listQuadreria2.asp?IDFolder=311&Tit

    17. Riccati_Vincenzo
    Biography of vincenzo riccati (17071775) vincenzo riccati was the secondson of Jacopo riccati and his early education was at home and from the Jesuits
    http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Riccati_Vincenzo.html
    Vincenzo Riccati
    Born: 11 Jan 1707 in Castelfranco Veneto (near Treviso), Italy
    Died: 17 Jan 1775 in Treviso, Italy
    Click the picture above
    to see two larger pictures Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
    Version for printing
    Vincenzo Riccati was the second son of Jacopo Riccati and his early education was at home and from the Jesuits. He entered the Jesuit order in 1726 going to the Jesuit College in Piacenza in 1728 to teach literature. In 1729 he moved to Padua, then to Parma in 1734, studied theology in Rome for a while, then returned to Bologna in 1739 where he taught mathematics in the College of San Francesco Saverio for 30 years. Vincenzo continued his father's work on integration and differential equations . He was skilled in hydraulic engineering and carried out flood control projects which saved the Venetian and Bolognian region from flooding. Vincenzo studied hyperbolic functions and used them to obtain solutions of cubics . He found the standard addition formulae for hyperbolic functions, their derivatives and their relation to the exponential function.

    18. References For Riccati_Vincenzo
    References for the biography of vincenzo riccati. L Conte, vincenzo riccatie il caso irriducibile dell equazione cubica, Period. Mat.
    http://www-groups.dcs.st-and.ac.uk/~history/References/Riccati_Vincenzo.html
    References for Vincenzo Riccati
    Version for printing
  • Biography in Dictionary of Scientific Biography (New York 1970-1990). Articles:
  • G T Bagni, Differential equations in the works of Jacopo and Vincenzo Riccati (Italian), Riv. Mat. Univ. Parma
  • L Conte, Vincenzo Riccati e il caso irriducibile dell'equazione cubica, Period. Mat.
  • M Gliozzi, Teoremi meccanici di Vincenzo Riccati (Italian), Physis - Riv. Internaz. Storia Sci.
  • G Loria, Storia delle matematiche (Milan, 1950), 663, 681, 706, 725.
  • A A Michieli, Una famiglia di matematici e di poligrafi trivigiani : i Riccati. II. Vincenzo Riccati, Ist. Veneto Sci. Lett. Arti. Parte II. Cl. Sci. Mor. Lett. Main index Birthplace Maps Biographies Index
    History Topics
    ... Anniversaries for the year
    JOC/EFR December 1996 School of Mathematics and Statistics
    University of St Andrews, Scotland
    The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/References/Riccati_Vincenzo.html
  • 19. Riccati
    Translate this page Oeuvres (numérisées) de vincenzo riccati (université de Bologne) http//serials.cib.unibo.it/cgi-ser/start/
    http://serge.mehl.free.fr/chrono/Riccati_v.html
    RICCATI Vincenzo, italien, 1707-1775 Théologien jésuite, physicien et mathématicien, Vincenzo est le second fils de Jacopo Riccati . Il fut professeur de mathématiques à Cagliari (Sicile) puis à Bologne. Ses travaux ont porté sur la résolution de certaines équations différentielles en liaison avec la mécanique, dont celle des fluides : il travailla comme son père aux problèmes hydrauliques des villes de Venise et de Bologne. Mais on lui doit principalement la mise en place, avant Lambert , de la trigonométrie hyperbolique (Vincentii Riccati , Tomus primus opusculorum , Bologne, 1757). Nombreuses publications en mathématiques et en mécanique (cf. in fine) Portrait sur Médaille (Bologne, 1776) : http://www.arsantiqva.com/it/index.phtml La trigonométrie hyperbolique A l'instar des fonctions circulaires (qu'il nomme lignes trigonométriques et note Cc. et Sc.), V. Riccati définit les fonctions sinus et cosinus hyperboliques qu'il nota Ch. et Sh. par des considérations d'aires sous l'hyperbole équilatère x - y = r . Il établira de nombreuses formules (duplication, addition, ...) analogues aux fonctions trigonométriques usuelles. L'apogée de ses travaux sera la publication (1765-67), d'un vaste traité de calcul intégral

    20. RICCATI, Vincenzo., Dialogo...dove Ne' Congressi Di Piu' Giornate Delle Forze Vi
    Engraved printer s device on title, 11 folding engraved plates, and woodcutdiagrams in the text. 428 pp., 1 leaf. Large 4to, cont. vellumbacked
    http://www.polybiblio.com/jahill/HillBibl-164W80.0.html
    Jonathan A. Hill, Bookseller Inc.
    "Raro...Questo Pregiato Libro" RICCATI, Vincenzo. Dialogo...dove ne' Congressi di piu' Giornate delle Forze Vive e dell'Azioni delle Forze Morte si tien Discorso. Bologna: Lelio dalla Volpe, 1749. This item is listed on Bibliopoly by Jonathan A. Hill, Bookseller Inc. ; click here for further details.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 92    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter