Geometry.Net - the online learning center
Home  - Scientists - Rham Georges De
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 92    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Rham Georges De:     more detail
  1. Essays on Topology and Related Topics: Memoires dedies a Georges de Rham (English and French Edition)
  2. Varietes differentiables: Formes, Courants, Formes Harmoniques. by Georges de Rham, 1955
  3. Varietes Differentiables: Formes, Courants, Formes Harmoniques by Georges De Rham, 1960
  4. Georges de Rham: An entry from Gale's <i>Science and Its Times</i>
  5. Differentiable Manifolds: Forms, Currents, Harmonic Forms (Grundlehren der mathematischen Wissenschaften) by Georges de Rham, 1984-09-19
  6. Varietes differentiables: Formes, courants, formes harmoniques (Actualites scientifiques et industrielles) (French Edition) by Georges de Rham, 1973
  7. Harmonic integrals by Georges de Rham, 1954
  8. Variétés différentiables: Formes, courants, formes harmoniques (Publications de l'Institut mathématique de l'université de Nancago) by Georges de Rham, 1955
  9. Lectures on introduction to algebraic topology, (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 44) by Georges de Rham, 1969
  10. Essays on Topology and Related Topics: Memoires dédiés à Georges de Rham by André Haefliger and Raghavan Narasimhan, 1970
  11. Varietes Differentiables: Formes, Courants, Formes Hamoniques: La Seconde Edition (Actualites Scientifiques et Industrielles.Publications l'Institute de Mathematique de l'Universite de Nancago III) by Georges De Rham, 1960
  12. A History of Algebraic and Differential Topology, 1900 - 1960 (Modern Birkhäuser Classics) by Jean Dieudonné, 2009-06-09

21. Georges De La Tour - Definition Of Georges De La Tour By The Free Online Diction
Information about georges de La Tour in the free online English dictionary andencyclopedia. georges de rham georges de rham georges de Scudery
http://www.thefreedictionary.com/Georges de La Tour
Domain='thefreedictionary.com' word='Georges de La Tour' Your help is needed: American Red Cross The Salvation Army join mailing list webmaster tools Word (phrase): Word Starts with Ends with Definition subscription: Dictionary/
thesaurus Computing
dictionary Medical
dictionary Legal
dictionary Financial
dictionary Acronyms
Columbia

encyclopedia
Wikipedia
encyclopedia
...
encyclopedia
Georges de La Tour
Also found in: Columbia Wikipedia Hutchinson 0.03 sec. Page tools Printer friendly
Cite / link Email Feedback Thesaurus Legend: Synonyms Related Words Antonyms Noun Georges de La Tour - French painter of religious works (1593-1652) La Tour old master - a great European painter prior to 19th century Mentioned in References in classic literature No references found No references found Dictionary/thesaurus browser Full browser George Westinghouse George William Russell Georges Bank Georges Bizet ... Georges Cuvier Georges de La Tour Georges Enesco Georges Eugene Benjamin Clemenceau Georges Gilles de la Tourette Georges Henri Lemaitre ... Georges de la Nézière Georges de La Tour Georges de Rham Georges de Rham' Georges de Scudery Georges de Scudéry ... Georges Eugene Benjamin Clemenceau Word (phrase): Word Starts with Ends with Definition Free Tools: For surfers: Browser extension Word of the Day NEW!

22. Collected Works In Mathematics And Statistics
de rham, georges, 19031990, Oeuvres mathématiques, 1, QA 611.15 R53 1981, Killam.Désargues, Gérard, 1591-1661, The geometrical work of Girard Désargues
http://www.mathstat.dal.ca/~dilcher/collwks.html
Collected Works in Mathematics and Statistics
This is a list of Mathematics and Statistics collected works that can be found at Dalhousie University and at other Halifax universities. The vast majority of these works are located in the Killam Library on the Dalhousie campus. A guide to other locations is given at the end of this list. If a title is owned by both Dalhousie and another university, only the Dalhousie site is listed. For all locations, and for full bibliographic details, see the NOVANET library catalogue This list was compiled, and the collection is being enlarged, with the invaluable help of the Bibliography of Collected Works maintained by the Cornell University Mathematics Library. The thumbnail sketches of mathematicians were taken from the MacTutor History of Mathematics Archive at the University of St. Andrews. For correction, comments, or questions, write to Karl Dilcher ( dilcher@mscs.dal.ca You can scroll through this list, or jump to the beginning of the letter:
A B C D ... X-Y-Z
A
[On to B] [Back to Top]
N.H. Abel

23. Lexikon Georges De Rham
georges de rham aus der freien EnzyklopädieWikipedia und steht unter der GNU Lizenz. Die Liste der Autoren ist
http://lexikon.freenet.de/Georges_de_Rham

E-Mail
Mitglieder Community Suche ... Hilfe document.write(''); im Web in freenet.de in Shopping Branchen Lexikon Artikel nach Themen alphabetischer Index Artikel in Kategorien Weitere Themen
Po-Rasur und Zicken- krieg: Olivia Jones mischt das BB-Dorf auf

Noch mehr Sex und Intrigen: Die neuen "Housewives"

œberraschung: Aldi bietet 3-GHz-PC f¼r nur 499 Euro an

Peugeot 20Cup: Doppelter FahrspaŸ ohne Ende
...
Expertenrat: So sollte Ihr Depot aussehen

Sie sind hier: Startseite Lexikon Georges de Rham
Georges de Rham
Georges de Rham 10. September 9. Oktober ) war ein Schweizer Mathematiker Nach einem Studium in Lausanne und Paris lehrte er in Lausanne und gleichzeitig Genf gelang ihm der damals schwierige Beweis der Homotopieinvarianz der nach ihm benannten Kohomologie , die schon von Henri Poincar© und ‰lie Cartan vermutet worden war. Der Differentialtopologie blieb er auch weiterhin treu. Bearbeiten
Werke
  • Sur l'analysis situs des vari©t©s   n dimensions. (Diss.) Paris, 1931 Vari©t©s diff©rentiables : formes, courants, formes harmoniques . Paris [engl.:]

24. Bibliography
rham, georges de, 19031990, Oeuvres mathematiques ; georges de rham, Geneve,L Enseignement mathematique, Universite de Geneve, 1981
http://www.library.cornell.edu/math/bibliography/display.cgi?start=R&

25. Porto-Riche, Georges De --  Encyclopædia Britannica
georges de rham University of St.Andrews, Scotland Introduction to the life andworks of this Swiss mathematician known for his contributions in de rham
http://www.britannica.com/eb/article?tocId=9060991

26. ICMI Bulletin No. 48, June 2000
georges de rham, L Enseignement Mathématique Revue internationale et laCommission internationale de georges de rham (Switzerland) - President of IMU
http://www.mathunion.org/Organization/ICMI/bulletin/48/EC_08_98.html
    The International Commission on Mathematical Instruction
    ICMI

    Bulletin No. 48

    June 2000
    ICMI Executive Committees 1908-1998
    During the fourth International Congress of Mathematicians, held in Rome in 1908, the following resolution was adopted:
      "The Congress, recognizing the importance of a comparative study on the methods and plans of teaching mathematics at secondary schools, charges Professors F. Klein, G. Greenhill, and Henri Fehr to constitute an International Commission to study these questions and to present a report to the next Congress."

    This resolution was submitted on the initiative of David Eugene Smith, who had suggested the idea of such an international commission three years earlier in the journal L'Enseignement Mathématique, in response to an article by Fehr. It marks the inception of the International Commission on Mathematical Instruction - although the Commission was known in its earlier years as the "International Commission on the Teaching of Mathematics".
    Over the years various Executives Committees of the Commission (first known as "Central Committees") have succeeded one another. The list of their officers and members appears below. This information has been gathered from the following sources:
    • Georges de Rham, "L'Enseignement Mathématique - Revue internationale et la Commission internationale de l'enseignement mathématique (CIEM) - Notice historique", ICMI Bulletin 7 (1976) 29-34.

27. Interventión De Henri Cartan
georges de rham,
http://www.mathunion.org/Publications/Bulletins/39/Cartan.html
    "In fact, Chandra stayed as a member of the E.C. during 24 years. up to 1978. Thanks to him, the Union developed itself in many respects. I want now to give some examples:
  • It was decided that the Union should take the responsibility of the Fields Medals: the Executive Committee nominates the members of the Fields jury, which is chaired by the President of the Union.
  • Chandra believed that the Union should take an effective responsibility in the scientific programm of the international congresses. For this purpose the E.C. nominates a so-called "Consultative Committee" and chooses its chairman; the Consultative Committee is in charge of selecting the chairmen of the panels and also the speakers of one-hour lectures.
  • On the proposal of Chandra it was decided that the retiring President of the Union should stay four years more in the E.C. as "Past President".
  • Chandra took the initiative of the edition, under the responsibility of the Union, of the "World Directory of Mathematicians", which has become very useful.
  • Chandra decided to publish regularly a "Bulletin of the International Mathematical Union"
  • Thanks to Chandra it was decided to create fellowships to help young mathematicians of the Third World to attend some meetings sponsored by the Union.

28. Georges De Rham
Translate this page Begrifferklärung georges de rham. Dieser Artikel basiert auf dem Artikelgeorges de rham (http//de.wikipedia.org/wiki/georges_de_rham) aus der freien
http://www.netzwelt.de/lexikon/Georges_de_Rham.html

29. De Rham Cohomology - Linix Encyclopedia
de rham s theorem, proved by georges de rham in 1931, states that for a compactoriented smooth manifold M, the groups H k dR (M) are isomorphic as real
http://web.linix.ca/pedia/index.php/De_Rham_cohomology
De Rham cohomology
In mathematics de Rham cohomology is a tool belonging both to algebraic topology and to differential topology , capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes . It is a cohomology theory based on the existence of differential forms with prescribed properties. It is in different, definite senses dual both to singular homology , and to Alexander-Spanier cohomology Table of contents showTocToggle("show","hide") 1 Definition
2 Harmonic forms

3 Hodge decomposition

4 de Rham's theorem
...
edit
Definition
The set of smooth, differentiable differential k -forms on any smooth manifold M form an abelian group (in fact a real vector space ) called
k M
under addition . The exterior derivative d gives mappings
d k M k M
There is a fundamental relationship
d
this follows essentially from symmetry of second derivatives . Therefore vector spaces of k -forms along with the exterior derivative are a cochain complex , the de Rham complex In differential geometry terminology, forms which are exterior derivatives are called

30. A Timeline Of Mathematics And Theoretical Physics
1931, georges de rham goes to work on his famous theorem in cohomology andcharacteristic classes, results that would become very important in string theory
http://superstringtheory.com/history/history3.html
The Official String Theory Web Site History before 1800 / 1900 until today) Max Planck makes his quantum hypothesis that energy is carried by indistinguishable units called quanta , rather than flowing in a pure continuum. This hypothesis leads to a successful derivation of the black body radiation law, now called Planck's Law, although in 1901 the quantum hypothesis as yet had no experimental support. The unit of quantum action is now called Planck's constant. Swiss patent clerk Albert Einstein proposes Planck's quantum hypothesis as the physics underlying the photoelectric effect. Planck wins the Nobel Prize in 1918, and Einstein in 1921, for developing quantum theory, one of the two most important developments in 20th century physics. Einstein publishes his simple, elegant Special Theory of Relativity, making mincemeat of his competition by relying on only two ideas: 1. The laws of physics are the same in all inertial frames, and 2. The speed of light is the same for all inertial observers. Minkowski publishes Raum und Zeit (Space and Time), and establishes the idea of a spacetime continuum

31. Princeton University Library | Fine Hall Library
R4713 1984, Differentiable manifolds Forms, currents, harmonic forms, de rham,georges. Physics Books 2000, Q325.H35 2000, Information and
http://finelib.princeton.edu/apr00bks.php
Main Menu Campus Libraries Library Home Campus Libraries Research Help Library Services ... Browse Search A-Z back Fine Hall Library, Princeton University
New Books (April 2000) Math or Physics or Other Date of Publication Call Number Title Author Math Books... Number from Ahmes to Cantor Gazale, Midhat Geometric calculus: According to the Ausdehnungslehre of H. Grassmann Peano, Giusepps Growth of algebras and Gelfand-Kirillov dimension Krause, Gunter R Applied functional analysis Aubin, Jean Pierre A course in operator theory Conway, John B. The action principles and partial differential equations Christodoulou, Demetrois Foliations 1 Candel, Alberto QA613.658.S787 2000, v.1, c.4 Surveys on surgery theory, v.1 Cappell, Sylvain QA613.658.S878, v.1, c.3 Surveys on surgery theory, v.1 Cappell,Sylvain Geometric mechanics Talman, Richard Some ideas on information processing, thinking and genetics Temkin, A. Ya. Oriented matroids Bjorner, Andres Integral quadratic forms and lattices: Proceedings of the international conference on integral quadratic forms and lattices: 1998: Seoul,Korea Kim, Myung-Hwan

32. Members Of The School Of Mathematics
de rham, georges, 194950, 1957-58. de WET, Jacobus S. 1938-40. deBEVER, Robert,1947-48. dedeCKER, Paul, 1957-58, 1983-84. deGOND, Pierre, 1994-95
http://www.math.ias.edu/dnames.html
DAFNI, Galia DAI, Xianzhe DALLA VOLTA, Vittorio DANCHIN, Raphaël D'ANGELO, John P. DANI, Shrikrishna G. DANKNER, Alan DANSKIN, John M., Jr. DAR, Aparna DASKALOPOULOS, Georgios DASKALOPOULOS, Panagiota D'ATRI, Joseph E. DAUBECHIES, Ingrid DAVIDS, Norman DAVIDSON, Morley DAVIES, Edward B. DAVIS, Donald M. DAVIS, Horace C. DAVIS, Martin D. DAVIS, Michael DAWSON, John W., Jr. DAY, Jane DAY, Mahlon M. De SAPIO, Rodolfo V. de BARTOLOMEIS, Paolo de BRANGES, Louis de CATALDO, Mark de FARIA, Edson de la LLAVE, Rafael de la TORRE, Pilar de LEEUW, Karel de LYRA, Carlos B. de RHAM, Georges de WET, Jacobus S. DEBEVER, Robert DEDECKER, Paul DEGOND, Pierre DEHEUVELS, René DEIFT, Percy A. DEKKER, Jacob C.E. del PINO, Manuel DELANGE, Hubert DELIGNE, Pierre DELLACHERIE, Claude DELLAPIETRA, Stephen A. DELLAPIETRA, Vincent DELSARTE, Jean DENEF, Jan J. DENISSOV, Serguei DENNIS, R. Keith DENY, Jacques DEODHAR, Vinay Vithal DESER, Stanley DESHOUILLERS, Jean-Marc DE TURCK, Dennis DEURING, Max DEVINATZ, Allen deWITT, B.S. DI PERNA, Ronald J. DIACONU, Calin DIAMOND, Fred DIAMOND, Harold G.

33. Members Of The School Of Mathematics
Translate this page de rham, georges dedeCKER, Paul deKKER, Jacob CE deNY, Jacques DOLD, AlbrechtDUBINS, Lester E. DVORETZKY, Aryeh FEdeRER, Herbert FRANKEL, Theodore T.
http://www.math.ias.edu/1955.html
ANDERSON, Richard D.
ATIYAH, Michael F.
ATKINSON, Frederick V.
AUSLANDER, Louis
BITTERMAN, M.E.
BOONE, William W.
BOTT, Raoul
BREMERMANN, Hans J.
BURKILL, John C.
CALABI, Eugenio
CHARNEY, Jule G. CHEN, Yu Why CHOQUET, Gustave CHOVER, Joshua CONNER, Pierre E. DANSKIN, John M., Jr. DENY, Jacques EELLS, James, Jr. EHRENPREIS, Leon FELDMAN, Jacob FOURÈS, Léonce FOURÈS, Yvonne FROELICHER, Alfred V. HARISH-CHANDRA, HELD, Richard M. HELLER, Alex HEWITT, Edwin HOUSEHAM, Keith O. IT, Kiyosi JAMES, Ioan M. KALISCH, Gerhard K. KAPLAN, Lewis D. KELLY, Paul J. KODAIRA, Kunihiko KÖHLER, Wolfgang KREISEL, Georg KURANISHI, Masatake KURODA, Sigekatu LERAY, Jean MARTIN, Allan D. MAUTNER, Friederich I. NAKANO, Shigeo NAKAYAMA, Tadasi OLUM, Paul PAPAKYRIAKOPOULOS, Christos D. PAPY, Georges L.S. REINER, Irving ROELCKE, Walter O.P. ROQUETTE, Peter ROSENBERG, Alex SCOTT, William R. SERRE, Jean-Pierre SHAPIRO, Arnold S. SINGER, Isadore M. SION, Maurice STEINBERG, Maria Alice

34. MathNet-Fields Medals
25 de rham, georges; Kodaira, Kunihiko Harmonic Integrals. Institute for AdvancedStudy, Princeton, N. J., 1950. iii+114 pp. 14.0X.
http://www.mathnet.or.kr/API/?MIval=people_fields_detail&ln=Kunihiko Kodaira

35. Combinatorial Approximation To The Divergence Of One-Forms On Surfaces
92 (1984), 405454. de rham, georges, Variétés différentiables, Hermann, Paris1960. Dodziuk, Józef, Finite-difference Approach to the Hodge Theory of
http://www.ster.be/lieven/pub/pub4.html
Combinatorial Approximation to the Divergence of One-Forms on Surfaces
Author
Lieven Smits
Bibliographical Reference
Israel Journal of Mathematics , volume 75 (1991), pages 257-271.
Abstract
We consider the approximation of a differential operator on forms by combinatorial objects via the correspondences of Whitney and de Rham. We prove that the Hilbert space dual of the combinatorial coboundary is an L approximation to the codifferential of one-forms on a two-dimensional Riemannian manifold.
Availability
The author has some reprints left. If your library does not have this particular journal issue, ask for a reprint by emailing him your postal address. Remove "unwanted" from the address below. lieven@sterunwanted.be
References
  • Albeverio, Sergio and Zegarlinski, Boguslaw , Construction of Convergent Simplicial Approximations of Quantum Fields on Riemannian Manifolds, University of Bochum preprint SFB 237, 1989. Cheeger, J., Analytic Torsion and Reidemeister Torsion, Proc. Nat. Acad. Sci. USA Schrader, Robert , On the Curvature of Piecewise Flat Spaces, Comm. Math. Phys.
  • 36. Institut De France - Recherche
    Translate this page rham georges RHEIMS Maurice RIBAUD Gustave RIBOT Alexandre RIBOT Théodule RICCICorrado RICH Alexander RICHARD Jean RICHARDS Sir Rex RICHEPIN Auguste
    http://www.institut-de-france.fr/franqueville/second_siecle/recherche_tome2.htm
    L
    L
    M N O ... Z L L

    LABEYRIE Antoine
    LABORDE Alexandre
    LA BORDERIE Louis
    LABRIOLLE Pierre
    LABROUSSE Pierre
    LACASSAGNE Antoine
    LACAU Pierre
    LACAZE Marie
    LACHELIER Jules LACOMBE Olivier LACOMBE Paul LACOUR-GAYET Jean LACOUR-GAYET Jules LACRETELLE Amaury LAFENESTRE Georges LAFFITTE Paul LA FORCE Auguste LA GORCE Pierre LAIR Jules LA LANDE de CALAN Pierre LALAOUNIS Ilias LALLEMAND Jean-Pierre LALOUX Victor LALOY Jean LAMBERT LANDOUZY Louis LANDOWSKI Marcel LANDOWSKI Paul LANGERON Roger LANGEVIN Paul LANGFORS Arthur LANGLOIS Charles-Victor LANGLOIS Christian LANGLOIS Hippolyte LANKESTER Sir Edwin Ray LANNELONGUE Odilon LANTIER Raymond LAOUST Henri LAPICQUE Louis LAPIE Pierre-Olivier LAPORTE Yves LAPPARENT Albert LAPRADE Albert LAROCHE Emmanuel LARROUMET Louis LASTEYRIE DU SAILLANT Robert LATARJET Raymond

    37. List Of Swiss People: Information From Answers.com
    Leonhard Euler (17071783), mathematician and geometer; MichelPlancherel (1885-1967), mathematician; georges de rham (1903-1990), mathematician
    http://www.answers.com/topic/list-of-swiss-people
    showHide_TellMeAbout2('false'); Business Entertainment Games Health ... More... On this page: Wikipedia Mentioned In Or search: - The Web - Images - News - Blogs - Shopping List of Swiss people Wikipedia List of Swiss people This is a list of famous Swiss and notable people from or resident in Switzerland and cantons forming present-day Switzerland.
    Architecture
    Art

    38. Differential Form: Information From Answers.com
    One has d2 = 0, see de rham cohomology for more details. The fundamental relationshipbetween the exterior exterior derivative georges de rham
    http://www.answers.com/topic/differential-form
    showHide_TellMeAbout2('false'); Business Entertainment Games Health ... More... On this page: Wikipedia Best of Web Mentioned In Or search: - The Web - Images - News - Blogs - Shopping differential form Wikipedia differential form A differential form is a mathematical concept in the fields of multivariate calculus differential topology and tensors . The modern notation for the differential form, as well as the idea of the differential forms as being the wedge products of exterior derivatives forming an exterior algebra , was introduced by Elie Cartan
    Gentle introduction
    We initially work in an open set in R n . A 0-form is defined to be a smooth function f . When we integrate a function f over an m dimensional subspace S of R n , we write it as Consider dx dx n for a moment as formal objects themselves, rather than tags appended to make integrals look like Riemann sums dx dx n basic forms wedge product on these elements, making only the anticommutativity restraint that for all i and j . Note that this implies We define the set of all these products to be basic forms , and similarly we define the set of products to be basic forms , assuming n is at least 3. Now define a

    39. Annales De L'Institut Fourier
    georges de rham . p. 5167 Complexeswith automorphisms and differentiable homeomorphy
    http://annalif.ujf-grenoble.fr/cgi-bin/auteur?Langue=eng&AuthorName=RHAM&AuthorF

    40. Annales De L'Institut Fourier
    Translate this page georges de rham . p. 51-67 Complexesà automorphismes et homéomorphie différentiable
    http://annalif.ujf-grenoble.fr/cgi-bin/auteur?Langue=fre&AuthorName=RHAM&AuthorF

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 2     21-40 of 92    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter