Geometry.Net - the online learning center
Home  - Scientists - Rham Georges De
e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 92    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Rham Georges De:     more detail
  1. Essays on Topology and Related Topics: Memoires dedies a Georges de Rham (English and French Edition)
  2. Varietes differentiables: Formes, Courants, Formes Harmoniques. by Georges de Rham, 1955
  3. Varietes Differentiables: Formes, Courants, Formes Harmoniques by Georges De Rham, 1960
  4. Georges de Rham: An entry from Gale's <i>Science and Its Times</i>
  5. Differentiable Manifolds: Forms, Currents, Harmonic Forms (Grundlehren der mathematischen Wissenschaften) by Georges de Rham, 1984-09-19
  6. Varietes differentiables: Formes, courants, formes harmoniques (Actualites scientifiques et industrielles) (French Edition) by Georges de Rham, 1973
  7. Harmonic integrals by Georges de Rham, 1954
  8. Variétés différentiables: Formes, courants, formes harmoniques (Publications de l'Institut mathématique de l'université de Nancago) by Georges de Rham, 1955
  9. Lectures on introduction to algebraic topology, (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 44) by Georges de Rham, 1969
  10. Essays on Topology and Related Topics: Memoires dédiés à Georges de Rham by André Haefliger and Raghavan Narasimhan, 1970
  11. Varietes Differentiables: Formes, Courants, Formes Hamoniques: La Seconde Edition (Actualites Scientifiques et Industrielles.Publications l'Institute de Mathematique de l'Universite de Nancago III) by Georges De Rham, 1960
  12. A History of Algebraic and Differential Topology, 1900 - 1960 (Modern Birkhäuser Classics) by Jean Dieudonné, 2009-06-09

1. Person Georges De Rham
Person Georges de Rham Ernst C. G. St ckelberg an Arnold Sommerfeld, 15. M rz 1937
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

2. Georges De Rham - Definition Of Georges De Rham In Encyclopedia
Georges de Rham (10 September 19039 October 1990) was a Swiss mathematician, known for his contributions to differential topology.He studied at the
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

3. Georges De Rham - Wikipedia, The Free Encyclopedia
Georges de Rham De Rham himself developed a theory of homological currents,that showed how this fitted with the generalised function concept.
http://en.wikipedia.org/wiki/Georges_de_Rham
Wikimedia needs your help in the final days of its fund drive. See our fundraising page
The Red Cross and other charities also need your help.
Georges de Rham
From Wikipedia, the free encyclopedia.
Georges de Rham 10 September 9 October ) was a Swiss mathematician , known for his contributions to differential topology He studied at the University of Lausanne and then in Paris for a doctorate, becoming a lecturer in Lausanne in 1931; where he held positions until retirement in 1971; he held positions in Geneva in parallel. In 1931 he proved de Rham's theorem , identifying the de Rham cohomology groups as topological invariants. This proof can be considered as sought-after, since the result was implicit in the points of view of Henri Poincar© and ‰lie Cartan . The first proof of the general Stokes' theorem , for example, is attributed to Poincar©, in 1899. At the time there was no cohomology theory , one could reasonably say: for manifolds the homology theory was known to be self-dual with the switch of dimension to codimension (that is, from H k to H n-k , where n is the dimension). That is true, anyway, for

4. Station Information - Georges De Rham
Georges de Rham (10 September 1903 9 October 1990) was a Swiss mathematician, known for his contributions to differential topology.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

5. Georges De Rham - InfoSearchPoint.com
Georges de Rham (10 September 1903 9 October 1990) was a Swiss mathematician, known for his contributions to differential topology.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

6. Klaus N Bernatzki, Lawrence Conlon, Georges De Rham, Penny Florence
Conlon Francis A Burgener Martti Kormano Differential Diagnosis in Computed Tomography Georges de Rham Differentiable Manifolds Forms Currents
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

7. Georges De Rham
Georges de Rham (10 September 1903 9 October 1990) was a Swiss mathematician, known for his contributions to differential topology.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

8. NodeWorks - Encyclopedia Georges De Rham
Georges de Rham
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

9. Georges De Rham - Mathematicians @ Onebraincell.com
Georges de Rham Biography and Picture collection of Georges de Rham. Georges de Rham
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

10. Rham: Sur La Théorie Des Formes Différentielles Harmoniques
Sur la théorie des formes différentielles harmoniques rham georges de Dans untravail récent 8 (z), la théorie des formes différentielles harmoniques de
http://www.numdam.org/numdam-bin/item?id=AUG_1946__22__135_0

11. BookkooB Differentiable Manifolds - Georges De Rham
This page lets you compare prices for Differentiable Manifolds by Georges De Rham from the leading UK book stores in seconds and save money by
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

12. Georges De Rham - Linix Encyclopedia
De Rham himself developed a theory of homological currents, De Rham alsoworked on the torsion invariants of smooth manifolds.deGeorges de Rham
http://web.linix.ca/pedia/index.php/De_Rham
Georges de Rham
Georges de Rham 10 September 9 October ) was a Swiss mathematician , known for his contributions to differential topology He studied at the University of Lausanne and then in Paris for a doctorate, becoming a lecturer in Lausanne in 1931; where he held positions until retirement in 1971; he held positions in Geneva in parallel. In 1931 he proved de Rham's theorem , identifying the de Rham cohomology groups as topological invariants. This proof can be considered as sought-after, since the result was implicit in the points of view of Henri Poincaré and Élie Cartan . The first proof of the general Stokes' theorem , for example, is attributed to Poincaré, in 1899. At the time there was no cohomology theory , one could reasonably say: for manifolds the homology theory was known to be self-dual with the switch of dimension to codimension (that is, from H k to H n-k , where n is the dimension). That is true, anyway, for orientable manifolds , an orientation being in differential form terms an n -form that is never zero (and two being equivalent if related by a positive scalar field). The duality can to great advantage be reformulated in terms of the Hodge dual - intuitively, 'divide into' an orientation form - as it was in the years succeeding the theorem. Separating out the homological and differential form sides allowed the coexistence of 'integrand' and 'domains of integration', as

13. Georges De Rham - Wikipedia
Translate this page NAME, Rham, Georges de. ALTERNATIVNAMEN. KURZBESCHREIBUNG, Schweizer Mathematiker.GEBURTSDATUM, 10. September 1903. GEBURTSORT. STERBEDATUM, 9.
http://de.wikipedia.org/wiki/Georges_de_Rham
Es ist geschafft - unser Spendenziel von 200.000$ ist erreicht . Herzlichen Dank an alle Spender.
Georges de Rham
aus Wikipedia, der freien Enzyklop¤die
Georges de Rham 10. September 9. Oktober ) war ein Schweizer Mathematiker Nach einem Studium in Lausanne und Paris lehrte er in Lausanne und gleichzeitig Genf gelang ihm der damals schwierige Beweis der Homotopieinvarianz der nach ihm benannten Kohomologie , die schon von Henri Poincar© und ‰lie Cartan vermutet worden war. Der Differentialtopologie blieb er auch weiterhin treu. Bearbeiten
Werke
  • Sur l'analysis situs des vari©t©s   n dimensions. (Diss.) Paris, 1931 . Paris [engl.:] Differentiable Manifolds: Forms, Currents, Harmonic Forms . Berlin, 1984. (Grundlehren Math. Wiss.; 266) ISBN 3-540-13463-8 [Sammlung:] Œuvres math©matiques [Festschrift:] (A. Haefliger and R. Narasimhan, eds.). Berlin, 1970. Lausanne, 1944.
Bearbeiten
Weblinks
Personendaten NAME Rham, Georges de ALTERNATIVNAMEN KURZBESCHREIBUNG Schweizer Mathematiker GEBURTSDATUM 10. September

14. De_Rham
Biography of georges de rham (19031990) georges de rham attended the secondaryschool Collège d Aigle from 1914 to 1919 and then at the Gymnase
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/De_Rham.html
Georges de Rham
Born: 10 Sept 1903 in Roche, Canton Vaud, Switzerland
Died: 9 Oct 1990 in Lausanne, Switzerland
Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Version for printing
Georges de Rham However de Rham also held a position at the University of Geneva. He was appointed there as extraordinary professor in 1936, being promoted to full professor in 1953. He retired from Geneva and was given an honorary position there in 1973. In addition to these permanent appointments de Rham held a number of visiting professorships. He visited Harvard in 1949/50 and the Institute for Advanced Study at Princeton in 1950 and again in 1957/58. He also visited the Tata Institute in Bombay in 1966. In [4] Raoul Bott describes the context of de Rham's famous theorem:- In some sense the famous theorem that bears his name dominated his mathematical life, as indeed it dominates so much of the mathematical life of this whole century. When I met de Rham in at the Institute in Princeton he was lecturing on the Hodge theory in the context of his 'currents'. These are the natural extensions to

15. References For De_Rham
Translate this page References for the biography of georges de rham. H Cartan, Les travaux degeorges de rham sur les variétés différentiables, in A Haefliger and R
http://www-groups.dcs.st-and.ac.uk/~history/References/De_Rham.html
References for Georges de Rham
Version for printing Books:
  • (Berlin - Heidelberg - New York, 1970).
  • (Geneva, 1981).
  • A Haefliger and R Narasimhan (eds.), (Berlin - Heidelberg - New York, 1970). Articles:
  • R Bott, Georges de Rham: 1901-1990, Notices Amer. Math. Soc.
  • H Cartan, La vie et l'oeuvre de Georges de Rham,
  • B Eckmann, Georges de Rham 1903-1990, Elem. Math.
  • Georges de Rham (1903-1990), Enseign. Math. Main index Birthplace Maps Biographies Index
    History Topics
    ... Anniversaries for the year
    JOC/EFR June 1997 School of Mathematics and Statistics
    University of St Andrews, Scotland
    The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/References/De_Rham.html
  • 16. BibScout - Rham, Georges De
    Erstellt von BibScout täglich aktualisiert
    http://titan.bsz-bw.de/bibscout/SA-SP/SF1000-SF9900/SF6980-SF7260/SF.7060
    @import url(http://titan.bsz-bw.de/bibscout/ploneColumns.css); @import url(http://titan.bsz-bw.de/bibscout/plone.css); @import url(http://titan.bsz-bw.de/bibscout/ploneCustom.css); Skip to content. BibScout web bibscout
    Home
    Mathematik Gesammelte Werke Autoren R Rham, Georges de BibScout Autoren B Autoren C Autoren D Autoren E ... Musikwissenschaft
    Rham, Georges de
    Document Actions Regensburger Verbundklassifikation SF.7060 SF 7060
    • Oeuvres mathematiques
      / Georges de Rham. - Geneve : Univ., l'Enseignement Math., 1981 Bibliotheken
    Erstellt von: BibScout
    t¤glich aktualisiert Verbund Bayern Thema
    Rham, Georges de
    Schlagworte
    Seite drucken
    Seitenanfang

    17. AIM Reprint Library:
    rham, georges 4. Reidemeister sTorsion Invariant and Rotations of S^n de rham, georges
    http://www.aimath.org/library/library.cgi?database=reprints;mode=display;BrowseT

    18. De Rham Cohomology -- Facts, Info, And Encyclopedia Article
    de rham s theorem. de rham s theorem, proved by (Click link for more info andfacts about georges de rham) georges de rham in 1931, states that for a (A
    http://www.absoluteastronomy.com/encyclopedia/d/de/de_rham_cohomology.htm
    De Rham cohomology
    [Categories: Differential geometry, Theorems, Homology theory, Algebraic topology]
    In (A science (or group of related sciences) dealing with the logic of quantity and shape and arrangement) mathematics de Rham cohomology is a tool belonging both to (Click link for more info and facts about algebraic topology) algebraic topology and to (Click link for more info and facts about differential topology) differential topology , capable of expressing basic topological information about (Click link for more info and facts about smooth manifold) smooth manifold s in a form particularly adapted to computation and the concrete representation of (Click link for more info and facts about cohomology class) cohomology class es. It is a (Click link for more info and facts about cohomology theory) cohomology theory based on the existence of (Click link for more info and facts about differential form) differential form s with prescribed properties. It is in different, definite senses dual both to (Click link for more info and facts about singular homology) singular homology , and to (Click link for more info and facts about Alexander-Spanier cohomology) Alexander-Spanier cohomology
    Definition
    The set of smooth, differentiable differential

    19. List Of Swiss People -- Facts, Info, And Encyclopedia Article
    Michel Plancherel (18851967), mathematician (Click link for more info andfacts about georges de rham) georges de rham (1903-1990), mathematician
    http://www.absoluteastronomy.com/encyclopedia/L/Li/List_of_Swiss_people.htm
    List of Swiss people
    [Categories: Lists of people by nationality, Swiss people, Switzerland]
    This is a list of famous Swiss and notable people from or resident in (A landlocked federal republic in central Europe) Switzerland and (A small administrative division of a country) cantons forming present-day Switzerland.
    Architecture
    (Click link for more info and facts about Francesco Borromini) Francesco Borromini (1599-1667), architect in Italy
    (Click link for more info and facts about Mario Botta) Mario Botta (born 1943), architect
    (French architect (born in Switzerland) (1887-1965)) Le Corbusier Charles-Edouard Jeanneret
    (Click link for more info and facts about Jacques Herzog) Jacques Herzog (born 1950), architect
    (Click link for more info and facts about William Lescaze) William Lescaze
    (Click link for more info and facts about Pierre de Meuron) Pierre de Meuron (born 1950), architect
    Art
    (Click link for more info and facts about Jacques-Laurent Agasse) Jacques-Laurent Agasse (1767-1849), painter
    (Click link for more info and facts about Cuno Peter Amiet) Cuno Peter Amiet
    (Click link for more info and facts about Albert Anker) Albert Anker
    (Alsatian artist and poet who was cofounder of Dadaism in Zurich; noted for abstract organic sculptures (1887-1966))

    20. Rham: Remarque Au Sujet De La Théorie Des Formes Différentielles Harmoniques
    rham, georges de Remarque au sujet de la théorie des formes différentiellesharmoniques. Annales de l université de Grenoble, 23 (19471948), p. 55-56
    http://www.numdam.org/numdam-bin/item?id=AUG_1947-1948__23__55_0

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 92    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter