Geometry.Net - the online learning center
Home  - Scientists - Reidemeister Kurt
e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 94    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Reidemeister Kurt:     more books (21)
  1. Die Unsachlichkeit der Existenzphilosophie: Philosophie im Lichte mathematischer Kritik. Neun kritische Aufsätze (German Edition) by Kurt Reidemeister, 1970-11-01
  2. Knot Theory by Kurt Reidemeister, 1983-09
  3. Hilbert. Gedenkband: David Hilbert: Naturerkennen und Logik. Königsberg 1930 (German Edition)
  4. Vorlesungen über Grundlagen der Geometrie (Grundlehren der mathematischen Wissenschaften) (German Edition) by Kurt Reidemeister, 1968-01-01
  5. Figuren by Kurt Reidemeister, 1946-01-01
  6. Die Unsachlichkeit der Exiytenzphilosophie. Vier kritische Aufsatze by Kurt REIDEMEISTER, 1954
  7. Raum und Zahl. by Kurt REIDEMEISTER, 1957
  8. Vorlesungen Über Grundlagen Der Geometrie; Ueber, Uber by Kurt Reidemeister, 1968-01-01
  9. Einfuhrung in die kombinatorische Topologie (AMS Chelsea Publishing) (German Edition) by Kurt Reidemeister, 1950-01-01
  10. Vorlesungen uber Grundlagen der Geometrie by Kurt Reidemeister, 1930-01-01
  11. Einfuhrung in Die Kombinatorische Topologie by Kurt Reidemeister, 1950
  12. Uber die relativklassenzahl gewisser relativquadratischer zahlkorper by Kurt Reidemeister, 1921-01-01
  13. das exakte denken der griechen: beiträge zur deutung von euklid, plato, aristoteles by Kurt Reidemeister, 1949
  14. Raum und Zahl (German Edition) by Kurt Reidemeister, 1957-01-01

1. Mathematische Fakult T G Ttingen Kurt Reidemeister
Kurt Reidemeister. Reidemeister wurde am 13. Oktober 1893 in Braunschweig geboren.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

2. Poster Of Reidemeister
Kurt Reidemeister. lived from 1893 to 1971. Reidemeister was a pioneer of knottheory and his work had a great influence on Group Theory. Find out more at
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Reidemeister.html
Kurt Reidemeister lived from 1893 to 1971 Reidemeister was a pioneer of knot theory and his work had a great influence on Group Theory. Find out more at
http://www-history.mcs.st-andrews.ac.uk/history/
Mathematicians/Reidemeister.html

3. Das Exakte Denken Der Griechen Beitr Ge Zur Deutung Von Euklid
Das Exakte Denken Der Griechen Beitr ge Zur Deutung Von Euklid, Plato, Aristoteles.; REIDEMEISTER, KURT.. Offered by The Bookshop, Inc.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

4. Kurt Reidemeister - Wikipedia, The Free Encyclopedia
Kurt Werner Friedrich Reidemeister (October 13, 1893 July 8, 1971) was amathematician born in Brunswick, Germany. He received his doctorate in 1921 with
http://en.wikipedia.org/wiki/Kurt_Reidemeister
Wikimedia needs your help in the final days of its fund drive. See our fundraising page
The Red Cross and other charities also need your help.
Kurt Reidemeister
From Wikipedia, the free encyclopedia.
Kurt Werner Friedrich Reidemeister October 13 July 8 ) was a mathematician born in Brunswick Germany . He received his doctorate in with a thesis in algebraic number theory . In he was appointed assistant professor at the University of Vienna . While there he became familiar with the work of Hahn and Wirtinger . In he became full professor at K¶nigsberg , where he stayed until , when he was forced to leave because of his opposition of the Nazis Reidemeister's interests were mainly in combinatorial group theory combinatorial topology , and the foundations of geometry . His books include Knoten und gruppen (1926), Einf¼hrung in die kombinatorische Topologie (1932), and Knotentheorie (1932). He is known for Reidemeister moves (see Knot theory ) and Reidemeister torsion This biographical article about a mathematician is a stub . You can help Wikipedia by expanding it Retrieved from " http://en.wikipedia.org/wiki/Kurt_Reidemeister

5. Das Exacte Denken Der Griechen. ~ REIDEMEISTER, Kurt.
Das exacte Denken der Griechen. ~ REIDEMEISTER, Kurt.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

6. Volkers Home Page
Kurt Reidemeister PAGE
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

7. Encyclopedia Kurt Reidemeister
Encyclopedia Kurt Reidemeister Updated 33 days 6 hours 10 minutes ago. Other descriptions of Kurt Reidemeister
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

8. Kurt Reidemeister - Mathematicians @ Onebraincell.com
Kurt Reidemeister Biography and Picture collection of Kurt Reidemeister. Kurt Reidemeister
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

9. Encyclopedia Kurt Reidemeister
1932). He is known for Reidemeister moves (see Knot theory) and Reidemeister torsion. Reidemeister, Kurt Reidemeister, Kurt Reidemeister, Kurt
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

10. Kurt Reidemeister's Contributions To Knot Theory Epistemic
G4, Institut for Matematiske Fag Dr. Moritz Epple Dibner Institute, MIT, USA Kurt Reidemeister's contributions to knot theory Epistemic
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

11. Kurt_Reidemeister - Investigacion Espanola
Kurt_Reidemeister Investigacion espanola Acoplamientos Relacionados Espera por favor Investigar
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

12. NodeWorks - Encyclopedia Kurt Reidemeister
Kurt Reidemeister
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

13. Nachlass Kraft - Forschungsinstitut Brenner-Archiv - Universität Innsbruck
Translate this page reidemeister kurt. Reininger Robert. Rohracher Hubert. Roretz Karl. Rose Alan.Rosenfeld L. Ross Alf. Roth-Fuchs Gabriele. Ryle Gilbert. Saarnio Uuno
http://www2.uibk.ac.at/brenner-archiv/archiv/kraft.html
brenner-archiv archiv kraft.html Forschungsinstitut Brenner-Archiv iPoint
Web-Mail

Druckansicht

Nur Text
... Brenner-Forum
Viktor Kraft
4.7.1880, Wien - 3.1.1975, Wien. Philosoph. 15 Kassetten Nachlassnummer: 155 Standort: Depot 4 Kassette 1 Notizen Einige wenige Briefe von: Albert Hans Bellaria Verlag Colerus Egmont Dalsgard-Hansen Povi Kastil Alfred König Gert Kröner Franz Mayer-Hildebrand Franziska Moser Simon Petzäll Ake Prager Hans Siegel Karl Unbekannt Universitas Weingartner Paul Wilbers Wilhelm Wright Georg Henrik von Abschriften von Briefen von Franz Brentano an Ernst Mach Prospekte u.ä. Sonderdrucke von Viktor Kraft Kassette 2 Diverse einzelne Zeitschriftenhefte und Drucke (u.a. 15 Hefte der Zeitschrift Philosophical Studies, 10 Nummern der Zeitschrift Psychobiologie) Kassette 3 Broschüren, Sonderdrucke (teilweise mit Widmung), Typoskripte, eine wenige Briefe in den Sonderdrucken Acham Karl Albert Hans Antonioli Livio Arrhenius Svante Aster Ernst von Bartley William W. Becker Oskar Beckh-Widmanstetter H. A. Bekic H. Bergman Samuel Hugo Bergmann Gustav Bergmann Hugo Berkeley George Bernstein Eduard Bobek Hans Bochenski I. M.

14. Nachlass Kraft
Translate this page Rand Rose. Ratzenhofer Gustav. Rauscher Josef. Reichenbach Hans. reidemeister kurt.Reininger Robert. Rohracher Hubert. Roretz Karl. Rose Alan. Rosenfeld L.
http://www2.uibk.ac.at/brenner-archiv/archiv/kraft.html?style=print

15. Articles - Kurt Reidemeister
Kurt Werner Friedrich Reidemeister (October 13, 1893 July 8, Original textfrom the article in Wikipedia, The Free Encyclopedia Kurt Reidemeister.
http://www.totalorange.com/articles/Kurt_Reidemeister
Educational Games Math Games Geography Games
Kurt Werner Friedrich Reidemeister
October 13 July 8 ) was a mathematician born in Brunswick Germany . He received his doctorate in with a thesis in algebraic number theory . In he was appointed assistant professor at the University of Vienna . While there he became familiar with the work of Hahn and Wirtinger . In he became full professor at K¶nigsberg , where he stayed until , when he was forced to leave because of his opposition of the Nazis
combinatorial group theory
combinatorial topology , and the foundations of geometry . His books include Knoten und gruppen (1926), Einf¼hrung in die kombinatorische Topologie (1932), and Knotentheorie (1932). He is known for Reidemeister moves (see Knot theory ) and Reidemeister torsion.
All text is available under the terms of the GNU Free Documentation License
Source: Original text from the article in Wikipedia, The Free Encyclopedia: Kurt Reidemeister
Advertisement:
Dictionary
Neuwagen Polyphonic Ringtones Plasma TV ... Jamster

16. Reidemeister
Biography of kurt reidemeister (18931971) kurt reidemeister was examined asa student by Landau and became an assistant of Hecke.
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Reidemeister.html
Kurt Werner Friedrich Reidemeister
Born: 13 Oct 1893 in Brunswick, Germany
Died:
Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Version for printing
Kurt Reidemeister was examined as a student by Landau and became an assistant of Hecke . His doctoral thesis was on algebraic number theory , the particular problem having been suggested by Hecke , and the resulting publication appeared in 1921. In [4] it is noted that:- Of all of the papers listed in Reidemeister's obituary by Artzy , this is the only one which deals with number theory . It rarely happens that a highly productive mathematician deserts the field of his PhD thesis so consistently later on. Immediately he had written his doctoral thesis, Reidemeister became interested in differential geometry . It was Blaschke who came up with the particular problems in differential geometry on which Reidemeister began to work. On Hahn 's recommendation, Reidemeister was appointed as associate professor of geometry at the University of Vienna in 1923. Here he became a colleague of Wirtinger who interested Reidemeister in knot theory . In particular Wirtinger showed Reidemeister how to compute the fundamental group of a knot from its projection. This method, originally due to

17. The Mathematics Genealogy Project - Kurt Reidemeister
According to our current online database, kurt reidemeister has 5 students and340 descendants. We welcome any additional information.
http://www.genealogy.math.ndsu.nodak.edu/html/id.phtml?id=15252

18. The Mathematics Genealogy Project - Update Data For Kurt Reidemeister
If you have Mathematics Subject Classifications to submit for an entire group ofindividuals (for instance all those that worked under a particular advisor)
http://www.genealogy.math.ndsu.nodak.edu/html/php/submit-update.php?id=15252

19. Knot Theory By Kurt Reidemeister
Knot Theory by kurt reidemeister, ISBN 0914351-00-1 Order this book from BCS!An English translation of Springer-Verlag s 1932 German edition. Contents
http://at.yorku.ca/i/a/a/d/16.htm
Topology Atlas Book Abstract # iaad-16 BCS Associates Knot Theory
by
Kurt Reidemeister
ISBN 0-914351-00-1
Order this book from BCS!
An English translation of Springer-Verlag's 1932 German edition. Contents
  • Foreword to the English edition
  • Publisher's foreword to the original edition
  • Introduction
  • Chapter I: - Knots and their projections
  • Definition of a knot
  • Regular projections
  • The subdivision of the projection plane into regions
  • Normal knot projections
  • Braids
  • Knots and braids
  • Parallel knots, Cable knots
  • Chapter II: - Knots and matrices
  • Elementary invariants
  • The matrices (c h
  • The matrix (a i
  • The determinant of a knot
  • The invariance of the trosion numbers
  • The torsion numbers of particular knots
  • The quadratic form of a knot
  • Minkowski's units
  • Minkowski's units for particular knots
  • A determinant inequality
  • Classification of alternating knots
  • Almost alternating knots
  • Almost alternating circles
  • The L-polynomial of a knot
  • L-polynomials of particular knots
  • Chapter III: - Knots and Groups
  • Equivalence of braids
  • The braid group
  • Definition of the group of a knot
  • Invariance of the knot group
  • The group of the inverse knot and of the mirror image knot
  • The matrix (l ik x)) and the group
  • The knot group and the matrices (c h
  • The edge path group of a knot
  • Structure of the edge path group
  • Covering spaces of the complementary space of the knot
  • The group of a parallel knot
  • The groups of torus knots
  • The L-polynomials of parallel knots
  • Several special knot groups
  • A particular covering space
  • Table of knots
  • Bibliography
  • Index BCS Associates has given its consent to include this document in
  • 20. TOPCOM, Book Review Of Knot Theory By Corinne Cerf
    Originally published as Knotentheorie by K. reidemeister, Ergebnisse der book is a 1983 translation of the 1932 celebrated book by kurt reidemeister.
    http://at.yorku.ca/t/o/p/c/85.htm
    Topology Atlas Document # topc-85
    A Book Review: Knot Theory
    by Corinne Cerf
    Mathematics Department, CP 216, Universite Libre de Bruxelles, Boulevard du Triomphe, B-1050 Bruxelles, Belgium Book Review from Volume 4, #2 , of TopCom Knot Theory by K. Reidemeister.
    Originally published as Knotentheorie by K. Reidemeister, Ergebnisse der Mathematik und ihrer Grenzgebiete, Alte Folge, Band 1, Heft 1, SPRINGER, Berlin, 1932.
    Translated from the German and edited by L. F. Boron, C. O. Christenson, and B. A. Smith, BCS Associates , Moscow, Idaho, 1983 . xv+143 pp. ISBN 0-914351-00-1 This book is a 1983 translation of the 1932 celebrated book by Kurt Reidemeister. It is subdivided into three chapters. The first one is an introduction to knots and braids, including (a sketch of) the original proof that two knots are equivalent if and only if their projections are related by a finite sequence of the three so-called Reidemeister moves. The second chapter describes the main knot invariants obtainable from matrices, like linking numbers, torsion numbers, determinants, and L-polynomials, now called normalized Alexander polynomials, that have been discovered independently by Reidemeister and Alexander. The third chapter deals with knot groups: definition by generators and relations from a projection, invariance, equivalence with the fundamental group of the knot complement, calculation of the group of special families of knots. A group-theoretic interpretation of the matrices and L-polynomials of Chapter II is given.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 94    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter