Geometry.Net - the online learning center
Home  - Scientists - Raphson Joseph
e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-83 of 83    Back | 1  | 2  | 3  | 4  | 5 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Raphson Joseph:     more detail
  1. A Mathematical Dictionary: Or; a Compendious Explication of All Mathematical Terms, Abridged from Monsieur Ozanam, and Others. with a Translation of His ... Easie and Useful Abstracts; [Etc., Etc.] by Joseph Raphson, 2010-01-10
  2. Universal Arithmetick: Or, a Treatise of Arithmetical Composition and Resolution by Isaac Newton, Joseph Raphson, et all 2010-02-03
  3. The history of fluxions, shewing in a compendious manner the first rise of, and various improvements made in that incomparable method. By (the late) Mr. Joseph Raphson, ... by Joseph Raphson, 2010-05-28
  4. Joannis [sic] Raphson, angli, Demonstratio de Deo sive methodus ad cognitionem Dei naturalem brevis ac demonstrativa. Cui accedunt epistolæ quædam miscellaneæ. ... (Latin Edition) by Joseph Raphson, 2010-06-10
  5. Historia fluxionum, sive tractatus originem & progressum peregregiæ istius methodi brevissimo compendio (et quasi synopticè) exhibens. Per Josephum Raphsonum ... (Latin Edition) by Joseph Raphson, 2010-05-27
  6. Analysis æquationum universalis, seu ad æquationes algebraicas resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo, deducta ... est, De spatio reali, ... (Latin Edition) by Joseph Raphson, 2010-06-16
  7. Demonstratio de deo sive methodus ad cognitionem dei naturalem brevis ac demonstrativa. Cui accedunt epistolæ quædam miscellaneæ. ... (Latin Edition) by Joseph Raphson, 2010-05-29
  8. A mathematical dictionary by Joseph Raphson, 1702-01-01

81. (IUCr) WHEATSHEAF: An Algorithm To Average Protein Structure Ensembles
The iteration is a multidimensional extension of the famous method of JosephRaphson, almost universally misattributed to Isaac Newton (Thomas Smith,
http://journals.iucr.org/d/issues/2005/01/00/dz5023/dz5023bdy.html
short communications
Volume 61
Part 1

Pages 112-116
January 2005 Received 15 June 2004
Accepted 28 October 2004
WHEATSHEAF : an algorithm to average protein structure ensembles
David Thomas a and Annalisa Pastore b a Biological NMR Unit, Institute for Clinical Research, University of Birmingham Medical School, Birmingham B15 2TT, England, and b Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, England
Correspondence e-mail: apastor@nimr.mrc.ac.uk A new algorithm is described that forms a single structure representative of ensembles of structures from files in the format used by the Protein Data Bank. A first attempt is made by averaging in the space spanned by bond lengths, inter-bond rotations and symmetry-multiplied dihedral rotations. This normally produces well formed regular secondary-structure elements, but the intervening less well ordered regions are often distorted because of the invalidity of averaging large rotations about divergent axes. For this reason, the algorithm includes a second stage that pulls the interatomic distances towards more fully representative values. Results produced by this method have proved better as judged by conventional quality checks than any input structure in nearly all cases tested so far, especially for the backbone, and much better than those produced by commonly used alternative methods. Keywords: protein structure; structural ensemble; representative structure; averaging rotations; dihedral bond symmetry.

82. Fraktalni Oblici U Numerièkim Aproksimacijama
razvio je takvu specificnu iteracijsku metodu, koju je kasnije usavršio JosephRaphson (17.st.). Neka je ? rješenje jednadžbe f(x) = 0 na segmentu a,
http://www.math.hr/~mathe/fraknum/
Broj 5
Mario Matijeviæ
Fraktalni oblici u numerièkim aproksimacijama
Sadržaj:
1. Priroda iteracijske metode
2. Cayleyjev problem

3. Koraci algoritma

4. Primjeri fraktalnih bazena
... download
1. Priroda iteracijske metode
Problem traženja rješenja jednadžbe f x ) = prastar je, same metode koje mogu rješavati jednadžbe u formi a x bx c = poznate su veæ tisuæama godina. U šesnaestom stoljeæu talijanski matematièari razvili su egzaktne formule za rješavanje polinomijalnih jednadžbi stupnja tri i èetiri, a poèetkom devetnaestog stoljeæa dokazano je kako ne postoje opæenite relacije u radikalima za jednadžbe stupnja pet ili više ( Niels Abel ). Unatoè tome, numerièke metode za rješavanje polinomijalnih jednadžbi bilo kojeg stupnja tijekom povijesti sustavno su razvijane. Sir Isaac Newton (17.st.) razvio je takvu specifiènu iteracijsku metodu, koju je kasnije usavršio Joseph Raphson (17.st.). f x ) = na segmentu [ a b ] i neka su i neprekidne funkcije koje ne mijenjaju predznak na segmentu [ a b ]. Ako je

83. Title
The summary for this English page contains characters that cannot be correctly displayed in this language/character set.
http://gu.wikipedia.org/wiki/વિકિપીડિà

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 5     81-83 of 83    Back | 1  | 2  | 3  | 4  | 5 

free hit counter