Geometry.Net - the online learning center
Home  - Scientists - Raphson Joseph
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 83    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Raphson Joseph:     more detail
  1. A Mathematical Dictionary: Or; a Compendious Explication of All Mathematical Terms, Abridged from Monsieur Ozanam, and Others. with a Translation of His ... Easie and Useful Abstracts; [Etc., Etc.] by Joseph Raphson, 2010-01-10
  2. Universal Arithmetick: Or, a Treatise of Arithmetical Composition and Resolution by Isaac Newton, Joseph Raphson, et all 2010-02-03
  3. The history of fluxions, shewing in a compendious manner the first rise of, and various improvements made in that incomparable method. By (the late) Mr. Joseph Raphson, ... by Joseph Raphson, 2010-05-28
  4. Joannis [sic] Raphson, angli, Demonstratio de Deo sive methodus ad cognitionem Dei naturalem brevis ac demonstrativa. Cui accedunt epistolæ quædam miscellaneæ. ... (Latin Edition) by Joseph Raphson, 2010-06-10
  5. Historia fluxionum, sive tractatus originem & progressum peregregiæ istius methodi brevissimo compendio (et quasi synopticè) exhibens. Per Josephum Raphsonum ... (Latin Edition) by Joseph Raphson, 2010-05-27
  6. Analysis æquationum universalis, seu ad æquationes algebraicas resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo, deducta ... est, De spatio reali, ... (Latin Edition) by Joseph Raphson, 2010-06-16
  7. Demonstratio de deo sive methodus ad cognitionem dei naturalem brevis ac demonstrativa. Cui accedunt epistolæ quædam miscellaneæ. ... (Latin Edition) by Joseph Raphson, 2010-05-29
  8. A mathematical dictionary by Joseph Raphson, 1702-01-01

61. NZMS Newsletter 73 Centrefold - John Fauvel
in a line stretching through Newton (and his youngr colleague joseph raphson)back to north African engineers and Babylonian scribes.
http://ifs.massey.ac.nz/mathnews/NZMS73/centrefold.html
NZMS Newsletter #73
CENTREFOLD
John Fauvel
This year's New Zealand Mathematical Society Visiting Lecturer, John Fauvel, is a historian of mathematics from the Open University in the UK. He will arrive in Auckland on 26 September, and spend the next three weeks touring through the universities in a southerly direction. The Open University teaches students who are studying part-time, from home, and has built up a strong reputation for the quality of its teaching materials designed to be studied at a distance. John brings on his visit to New Zealand a great enthusiasm for mathematics education at all levels, and the use of history of mathematics within that teaching and learning process. This is the first time that the New Zealand Mathematical Society Visiting Lecturer has been a specialist in the history of mathematics. A Scot, born in Glasgow, John was educated in mathematics at the universities of Essex and Warwick before joining the Open University to help in an area which the University (then in its early years) was seeking to develop, the history of mathematics. Since then he has worked on mathematics as well as interdisciplinary courses. It was for an Open University course on the history of mathematics that John produced, with his OU colleague Jeremy Gray, one of the leading source-books in the field, "The history of mathematics: a reader" (Macmillan 1987). John's last visit to New Zealand, in 1995, was to make some films for the Open University's foundation mathematics course, having returned from an earlier visit to insist to his UK colleagues that every possible way in which mathematical modelling is used to understand the world can be found in New Zealand! The films include the modelling work of Colin Fox (University of Auckland), David Fletcher (University of Otago), and Dion Burns (University of Otago), an interview with statistician Wiremu Solomon (University of Auckland), and include, too, the 1858 Maori arithmetic which John found in the Auckland Public Library on his previous visit, thanks to the help of New Zealand's historian-in-residence Garry Tee and Auckland mathematics educator Bill Barton.

62. Sir Isaac Newton - Monografias.com
Translate this page Este método fue modificado ligeramente por joseph raphson en 1690, y después porThomas Simpson en 1740, para dar la forma actual. El De quadratura curvarum
http://www.monografias.com/trabajos14/sirisaac/sirisaac.shtml
Nuevos Publicar Toolbar Foros ... Recomendar Recomendamos:
Barra de herramientas gratuita
Buscar: Avanzada
Bajar Trabajo (Descargar) Agregar a favoritos Recomendar Imprimir
Sir Isaac Newton
  • Leyes del movimiento de Newton El teorema del binomio
  • Isaac Newton Navidad salud de su nieto. Su madre, mujer Newton escuela comportamiento completamente normal, con un y la libertad y una atm la ciencia , y este ley sobre la Universidad . En 1663, Newton ley a sus investigaciones Descartes por Van Schooten. Desde finales de 1664, Newton parece dispuesto a contribuir personalmente al desarrollo familia de fluxiones, generaliza el teorema del binomio y pone de manifiesto la naturaleza de los colores . Sin embargo, Newton guarda silencio sobre sus descubrimientos y reanuda sus estudios en Cambridge en 1667. De 1667 a 1669, emprende activamente investigaciones sobre a un potente luz con una ciencias libro naturaleza de la luz y de ecuaciones cursos principios de su . Desde 1684, su amigo Halley le incita a publicar sus trabajos de moral libros de esta obra contienen los fundamentos de la y la escritos en el lenguaje de la pura. El

    63. Leibniz
    Such a notion is identical to the notion of infinite space developed by JohnToland and joseph raphson, and something very much like it would have been
    http://www.open.ac.uk/Arts/bshp/confs/leibniz/leibabs.htm
    British Society for the History of Philosophy
    Leibniz and the English-Speaking World Abstracts LEIBNIZ AND THE HARTLIB CIRCLE Maria Rosa Antognazza (King's College, London) LEIBNIZ, THE CAUSE OF GRAVITY AND PHYSICAL THEOLOGY Robin Attfield (University of Cardiff) Leibniz's Fourth Paper to Clarke introduces the charge that Newton's belief in gravitation introduces occult powers into physics, and that this involves a premature resort to the supernatural. While Clarke rejected this charge, presenting in his Fifth Reply the official positivistic Newtonian line, he and Newton probably believed something close to what Leibniz charged him with maintaining, holding that God, through his omnipresence, causes the otherwise mysterious phenomenon of action at a distance, until in 1717 (after Leibniz's death) Newton denounced this stance. In this short paper I attempt to disentangle the threads of this dispute, and to appraise the relevant theology and physics at issue, plus the implicit suggestion of Leibniz that Newton was guilty of (in Austin Farrer's phrase) 'physical theology'. 'UN DES MES AMIS'. ON LEIBNIZ'S RELATION TO THE ENGLISH MATHEMATICIAN AND THEOLOGAN JOHN WALLIS

    64. Isaac Newton - El Método De Las Fluxiones
    Translate this page Este método fue modificado ligeramente por joseph raphson en 1690, y después porThomas Simpson en 1740, para dar la forma actual.
    http://www.solociencia.com/cientificos/isaac-newton-metodo-fluxiones.htm
    El Portal de la Ciencia y la Tecnologia en Español Menú principal Portada Noticias científicas Científicos Astronomía ... Arquitectura
    Info Añadir a favoritos Página de inicio Cómo contactar Mapa de la web ... Aviso legal
    Índice 1. Biografía
    2. Leyes del movimiento de Newton

    3. La Primera Ley de Newton

    4. La Tercera Ley de Newton
    ...
    12. Sobre el autor

    El método de las fluxiones Se franquea una segunda etapa en el momento en que Newton acaba, en 1671, su obra Methodus fluxionum et serierum infiniturum, comenzada en 1664. Newton tenía intención de publicarla, en particular en su Opticks, pero a causa de las críticas formuladas anteriormente con respecto a sus principios sobre la naturaleza de la luz, decidió no hacerlo. De hecho, será publicada en 1736 en edición inglesa, y no será publicada en versión original hasta 1742. Newton expone en este libro su segunda concepción del análisis introduciendo en sus métodos infinitesimales el concepto de fluxión.
    En su prefacio, Newton comenta la decisión de Mercator de aplicar al álgebra la «doctrina de las fracciones decimales», porque, dice, «esta aplicación abre el camino para llegar a descubrimientos más importantes y más difíciles». Después habla del papel de las sucesiones infinitas en el nuevo análisis y de las operaciones que se pueden efectuar con esas sucesiones.
    La primera parte de la obra se refiere justamente a la reducción de «términos complicados» mediante división y extracción de raíces con el fin de obtener sucesiones infinitas.

    65. Mathematicians
    Translate this page joseph raphson, 1648, 1715. Lewis Fry Richardson, 1881 Newcastle upon Tyne,,1953 Kilmun, Argyll. Werner Romberg, 1909 Berlin. Carl David Tolme Runge
    http://www.it.uu.se/edu/course/homepage/bervet1/p1H04/pages/mathematicians.html
    Mathematicians
    Pafnuty Lvovich Chebyshev 1821 Okatovo 1894 St Petersburg Roger Cotes 1682 Burbage, Leicestershire 1716 Cambridge Leonard Euler 1707 Basel 1783 St Petersburg Boris Grigorievich Galerkin 1871 Polotsk, Belarus 1945 Moscow Carl Friedrich Guass 1777 Braunschweig Charles Hermite 1822 Dieuze, Lorraine 1901 Paris, David Hilbert 1862 Königsberg 1943 Göttingen, Karl Gustav Jacob Jacobi 1804 Potsdam Martin Willhelm Kutta 1867 Pitschen Edmond Nicolas Laguerre 1834 Bar-le-Duc 1886 Bar-le-Duc Adrien-Marie Legendre 1752 Paris 1833 Paris Colin Maclaurin 1698 Kilmodan (nr. Tighnabruaich) 1746 Edinburgh 1846 Stockholm 1897 Stockholm Isaac Newton 1642 Woolsthorpe (nr. Grantham) 1727 London Joseph Raphson Lewis Fry Richardson 1881 Newcastle upon Tyne, 1953 Kilmun, Argyll Werner Romberg 1909 Berlin Carl David Tolme Runge 1856 Bremen Phillip Ludwig von Seidel 1821 Zweibrucken 1896 Munich Thomas Simpson 1710 Market Bosworth, Leicestershire 1761 Market Bosworth Brooke Taylor 1685 Edmonton 1731 London A link to more history of mathematicians

    66. Historia Matematica Mailing List Archive: Re: [HM] Usage Of The Word Abacus
    translated by joseph raphson in 1715, in The Theory of Fluxions ., where thispassage is rendered Now from this being known as the Algorithm, as I
    http://sunsite.utk.edu/math_archives/.http/hypermail/historia/nov98/0206.html
    Re: [HM] Usage of the word abacus
    David Fowler david.fowler@warwick.ac.uk
    Fri, 20 Nov 1998 08:33:07 +0000
    Julio Gonzalez Cabillon mentioned my interest back in December 1996 in the
    words algorithm, algorism, algoristics, ... This was to prepare a note for
    misunderstanding (perhaps, more accurately, a mistake!) in the first
    edition. This note had to be short (to fit in the available space though
    at a very late stage it was decided to reset the while book, so this became
    irrelevant) and biased towards the interests of the book as a whole, so it
    omits the detail that has been under discussion in the recent discussion on
    the math-history list. In particular, it doesn't engage with the issue of
    augrym, What I eventually arrived at is the following. (This omits italic,
    a bit of Greek, formatting, etc.)

    67. ۞ Bairstow-Verfahren - Im IzyNews Lexikon
    Translate this page Das Newtonsche Näherungsverfahren , auch Newton-raphsonsche Methode , (benanntnach Sir Isaac Newton 1669 und joseph raphson 1690) ist in der Mathemat.
    http://www.izynews.com/de_l/Bairstow-Verfahren
    encUri = 'http%3a%2f%2fwww.izynews.com%2fde_l%2fBairstow-Verfahren';
    Bairstow-Verfahren - im IzyNews Lexikon
     Nederlands   Fran§ais  noch keine Kommentare
    Kommentare unserer Leser
    • Noch keine Benutzer-Kommentare. Ihre Bewertung des Artikels k¶nnen Sie hier abgeben
    Das Bairstow-Verfahren ist ein Iterationsverfahren der numerischen Mathematik und dient dazu, die Nullstellen eines Polynoms zu bestimmen. Weitere Empfehlungen und Rezensionen zu Bairstow-Verfahren finden Sie hier
    Merkmale des Verfahrens
    Polynome mit reellen Koeffizienten k¶nnen auch komplexe Nullstellen haben. Mit Verfahren wie der Regula Falsi und dem Newton-Verfahren , die nur eine Nullstelle finden, ist es nicht m¶glich, komplexe Nullstellen zu finden, ohne dass auch die Berechnung im Komplexen mit komplexer Arithmetik ausgef¼hrt wird. Das Bairstow-Verfahren nutzt die Eigenschaft von Polynomen mit reellen Koeffizienten, die besagt, dass komplexe Nullstellen immer paarweise konjugiert auftreten. Das Verfahren findet die Nullstellen als Paar und liefert eine quadratische Gleichung mit reellen Koeffizienten, die das Nullstellenpaar liefert.

    68. MathGroup Archive: August 2004 [00567]
    Daniel Lichtblau Wolfram Research Newton and raphson from Olde England.joseph raphson was rumored to be Newton s programmer.
    http://forums.wolfram.com/mathgroup/archive/2004/Aug/msg00567.html
    PreloadImages('/common/images2003/btn_products_over.gif','/common/images2003/btn_purchasing_over.gif','/common/images2003/btn_services_over.gif','/common/images2003/btn_new_over.gif','/common/images2003/btn_company_over.gif','/common/images2003/btn_webresource_over.gif'); Wolfram Forums MathGroup Archive January February ... Give us feedback Sign up for our newsletter: Date Index Thread Index Author Index Re: Re: Beware of NSolve - nastier example

    69. MathGroup Archive: September 2004 [00016]
    joseph raphson was rumored to be Newton s programmer. BTW your suggestionto scale the equation does yield some improvements at least no
    http://forums.wolfram.com/mathgroup/archive/2004/Sep/msg00016.html
    PreloadImages('/common/images2003/btn_products_over.gif','/common/images2003/btn_purchasing_over.gif','/common/images2003/btn_services_over.gif','/common/images2003/btn_new_over.gif','/common/images2003/btn_company_over.gif','/common/images2003/btn_webresource_over.gif'); Wolfram Forums MathGroup Archive January February ... Give us feedback Sign up for our newsletter: Date Index Thread Index Author Index Re: Re: Re: Beware of NSolve - nastier example
    • To : mathgroup at smc.vnet.net Subject : [mg50384] Re: [mg50372] Re: [mg50346] Re: Beware of NSolve - nastier example From Date : Wed, 1 Sep 2004 01:49:23 -0400 (EDT) References Reply-to : drbob at bigfoot.com Sender : owner-wri-mathgroup at wolfram.com
    Prev by Date: matrix method for minimal pisot theta sequences as matrices Next by Date: Re: Create subscript box by keyboard Previous by thread: Re: Re: Re: Beware of NSolve - nastier example Next by thread: Re: Beware of NSolve - nastier example

    70. Sir Isaac Newton
    After Newton published his method, joseph raphson presented a modification ofthe method using the same equation over and over again with the new values.
    http://www.lucasianchair.org/lucasianchair.org/newton.html
    Sir Isaac Newton "Nature and Nature's laws lay hid in the night; God said, Let Newton be! And all was light." Alexander Pope Isaac Newton (1642-1727) is perhaps the most famous Lucasian Professor of Mathematics. He is probably best known to the average person because of the story of the falling apple and its relationship to the discovery of gravity. Newton discovered the force of gravity, and today the search is for its carrier: gravity waves. The years in between are a fascinating scientific story, detailed in a book edited by the current Lucasian professor, Stephen Hawking, Three Hundred Years of Gravitation. Newton arrived at Cambridge in 1661, was elected scholar in 1664, graduated BA in 1664/5 in a class of twenty-six from Trinity, and made MA in 1668. During a wonderful surge of scientific production Newton produced three great achievements in the short space of two years. The first great achievement was the invention of fluxions, which resulted in calculus. He used this knowledge to advance his other work. Newton's second great achievement was the discovery of the law of the composition of light, later used in the development of optics. His third great achievement, the discovery of the universal force of gravity, was the basis for the Principia , his ultimate achievement.

    71. Lebensdaten Von Mathematikern
    Translate this page raphson, joseph (1651 - 1708) Rayleigh, Lord John (1842 - 1919) Razmadze,Andrei (1889 - 1929) Recorde, Robert (1510 - 1558)
    http://www.mathe.tu-freiberg.de/~hebisch/cafe/lebensdaten.html
    Diese Seite ist dem Andenken meines Vaters Otto Hebisch (1917 - 1998) gewidmet. By our fathers and their fathers
    in some old and distant town
    from places no one here remembers
    come the things we've handed down.
    Marc Cohn Dies ist eine Sammlung, die aus verschiedenen Quellen stammt, u. a. aus Jean Dieudonne, Geschichte der Mathematik, 1700 - 1900, VEB Deutscher Verlag der Wissenschaften, Berlin 1985. Helmut Gericke, Mathematik in Antike und Orient - Mathematik im Abendland, Fourier Verlag, Wiesbaden 1992. Otto Toeplitz, Die Entwicklung der Infinitesimalrechnung, Springer, Berlin 1949. MacTutor History of Mathematics archive A B C ... Z Abbe, Ernst (1840 - 1909)
    Abel, Niels Henrik (5.8.1802 - 6.4.1829)
    Abraham bar Hiyya (1070 - 1130)
    Abraham, Max (1875 - 1922)
    Abu Kamil, Shuja (um 850 - um 930)
    Abu'l-Wafa al'Buzjani (940 - 998)
    Ackermann, Wilhelm (1896 - 1962) Adams, John Couch (5.6.1819 - 21.1.1892) Adams, John Frank (5.11.1930 - 7.1.1989) Adelard von Bath (1075 - 1160) Adler, August (1863 - 1923) Adrain, Robert (1775 - 1843)

    72. Project MUSE
    16 and also by the mathematician joseph raphson, and by Newton s great joseph raphson, Isaac Newton and their Predecessors Annals of Science37
    http://muse.jhu.edu/journals/journal_of_the_history_of_philosophy/v041/41.3reid.
    How Do I Get This Article? Athens Login
    Access Restricted
    This article is available through Project MUSE, an electronic journals collection made available to subscribing libraries NOTE: Please do NOT contact Project MUSE for a login and password. See How Do I Get This Article? for more information.
    Login: Password: Your browser must have cookies turned on Reid, Jasper William 1972- "Jonathan Edwards on Space and God"
    Journal of the History of Philosophy - Volume 41, Number 3, July 2003, pp. 385-403
    The Johns Hopkins University Press

    Abstract
    This paper examines how Jonathan Edwards (1703-1758) shifted from a broadly Newtonian conception of divine, absolute space to a more Berkeleian or Leibnizian theory of merely relative, ideal space. Setting Edwards' views within a context of contemporary European thought, it elucidates his early position, as expressed in the opening portion of his essay 'Of Being' (c. 1721), and then proceeds to chart the development of his more mature views, showing in particular how the development of his immaterialism during the early 1720s drove him to change his mind on the issue of space and its relationship with God. Search Journals About MUSE Contact Us

    73. À§´ëÇѼöÇÐÀÚ ¸ñ·Ï
    raphson, joseph raphson Born 1648 inEngland Died 1715; Rayleigh, John William Strutt Lord Rayleigh Born 12 Nov
    http://www.mathnet.or.kr/API/?MIval=people_seek_great&init=R

    74. Encyclopedia: Newton's Method
    1690, joseph raphson published a simplified description in Analysis aequationum raphson again viewed Newton s method purely as an algebraic method and
    http://www.nationmaster.com/encyclopedia/Newton's-method

    Supporter Benefits
    Signup Login Sources ... Pies
    What's new?
  • Our next offering Latest newsletter Student area Lesson plans
  • Recent Updates
  • Main Page Zionism massacre Zacapa Yepp ...
  • More Recent Articles Top Graphs
  • Richest Most Murderous Most Taxed Most Populous ...
  • More Stats
    Encyclopedia: Newton's method
    Updated 137 days 10 hours 49 minutes ago. Other descriptions of Newton's method In Numerical analysis is the study of algorithms for the problems of continuous mathematics (as distinguished from discrete mathematics). This means it deals mainly with real variable or complex variable questions, numerical linear algebra over the real or complex fields, the solution of differential equations, and other related problems arising in... numerical analysis Newton's method (or the Newton-Raphson method ) is an efficient Flowcharts are often used to represent algorithms. An algorithm is a finite set of well-defined instructions for accomplishing some task which, given an initial state, will result in a corresponding recognisable end-state (contrast with heuristic). Algorithms can be implemented by computer programs, although often in restricted forms; an... algorithm for finding approximations to the zeros (or roots) of a real -valued In mathematics, a function is a relation, such that each element of a set (the domain) is associated with a unique element of another (possibly the same) set (the codomain, not to be confused with the range). The concept of a function is fundamental to virtually every branch of mathematics...

    75. ComputerBase - Lexikon-Kategorie: Algorithmus
    Translate this page Juli 2005 Das Newtonsche Näherungsverfahren, auch Newton-raphsonsche Methode, (benanntnach Sir Isaac Newton 1669 und joseph raphson 1690) ist in der
    http://www.computerbase.de/lexikon/Kategorie:Algorithmus

    76. Raphson
    raphson.
    http://serge.mehl.free.fr/chrono/Raphson.html
    RAPHSON Joseph, anglais, 1648-1715 des tangentes de Newton de Newton-Raphson
    Thomas Ceva Tschirnhausen

    77. Biography-center - Letter R
    Raphael, www.ibiblio.org/wm/pa int/auth/raphael/; raphson, Josephwwwhistory.mcs.st-and.ac.uk/~history/Mathe maticians/raphson.html; Rasiowa, Helena
    http://www.biography-center.com/r.html
    Visit a
    random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish
    R
    505 biographies
    • R abinow, Jacob
      web.mit.edu/invent/www/inventorsR-Z/rabinow.html
    • R aphael,
      www.getty.edu/art/collections/bio/a508-1.html
    • R oyce, Mike
      www.grandprix.com/gpe/cref-roymik.html
    • R umsfeld, Donald
      www.ustdrc.gov/members/rumsfeld.html
    • www-history.mcs.st-and.ac.uk/~history/Mathematicians/R enyi.html
    • R. M., Williams www.abc.net.au/btn/australians/rmwilliams.htm
    • www-history.mcs.st-and.ac.uk/~history/Mathematicians/R ado.html
    • Ra ft, George members.rogers.com/kburnage/georgeraft.html
    • Rabbitt, Eddie elvispelvis.com/ed dierabbitt.htm
    • Rabi, Isidor www.pbs.org/wgbh/amex/bomb/peopleeve nts/pandeAMEX80.html
    • Rabiah ibn Kab, www.usc.edu/dept/MSA/history/biographies/sahaabah/bio.RABIAH_IBN_ KAB.html
    • Rabin, Yitzhak

    78. MathsNet: A Level Pure 4 Module
    The equation f(x)=0 my be solved by the Newtonraphson method. newton raphson.Click on the button below, then from the menu provided select Method.
    http://www.mathsnet.net/asa2/modules/p44newton.html
    AS/A2
    Pure 5

    Pure 6
    Topic 4: Numerical solution of equations The Newton-Raphson method The equation f(x)=0 my be solved by the Newton-Raphson method. Click on the button below, then from the menu provided select Method Newtons Method . You may also need to resize the display. Use the Function menu option to choose other functions.
    A Java applet should appear here
    Summary
    • the Newton Raphson method is not always successful!
    Java applet used with permission from Joseph L. Zachary

    79. Historical Development Of The Newton-Raphson Method
    Algorithms, Measurement, Performance, Theory. Keywords Isaac Newton, Josephraphson, Newtonraphson method, Thomas Simpson, iteration, nonlinear equations
    http://portal.acm.org/citation.cfm?id=222510

    80. Earliest Known Uses Of Some Of The Words Of Mathematics (A)
    Algorithm is found in English in 1715 in The Theory of Fluxions by JosephRaphson Now from this being known as the Algorithm, as I may say of this
    http://members.aol.com/jeff570/a.html
    Earliest Known Uses of Some of the Words of Mathematics (A)
    Last revision: Jan. 26, 2005 ABELIAN EQUATION is named for a kind of equation treated by Niels Henrik Abel (1802-1829) in his "Mémoire sur une classe particulière d'équations résoluble algébriquement" (1829) Oeuvres Complètes, Leopold Kronecker (1823-1891) introduced the term Abelsche Gleichung in an 1853 paper on algebraically soluble equations, "Über die algebraisch auflösbren Gleichungen, erste Abhandlung" in Werke IV , p. 27ff. Kronecker used the term to describe an equation which in modern terms would be described as having cyclic Galois group. According to B. L. van der Waerden A History of Algebra (1985, p. 149) Kronecker was the first German mathematician to fully recognise the importance of the investigations of Abel and Galois on the solubility of algebraic equations. [John Aldrich, Peter M. Neumann] ABELIAN FUNCTION. C. G. J. Jacobi (1804-1851) proposed the term Abelsche Transcendenten (Abelian transcendental functions) in Crelle's Journal Werke III , p. 481. (DSB).

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 83    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter