Geometry.Net - the online learning center
Home  - Scientists - Mascheroni Lorenzo
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Mascheroni Lorenzo:     more books (25)
  1. Poesie Edite Ed Inedite Di Lorenzo Mascheroni (Italian Edition) by Lorenzo Mascheroni, 2010-02-13
  2. In Morte Di Lorenzo Mascheroni: Cantica Di Vincenzo Monti (Italian Edition) by Vincenzo Monti, 2010-01-09
  3. In Morte Di Lorenzo Mascheroni (1831) (Italian Edition) by Vincenzo Monti, 2010-09-10
  4. L. Mascheroni's Gebrauch Des Zirkels Aus Dem Italiaenischen In's Franzoesische Uebersetzt Durch Herrn A.M. Carette. In's Deutsche Uebersetzt, Vermehrt ... Uebung Von Mehr Denn 400 (German Edition) by Lorenzo Mascheroni, Antoine Michel Carette, 2010-02-04
  5. Problemi Di Geometria (Italian Edition) by Lorenzo Mascheroni, 2009-04-27
  6. La Geometria Del Compasso (Italian Edition) by Lorenzo Mascheroni, 2010-01-10
  7. Poesie (Italian Edition) by Lorenzo Mascheroni, Aloisio Fantoni, 2010-02-12
  8. Géométrie Du Compas, Tr. Par A.M. Carette (French Edition) by Lorenzo Mascheroni, 2010-02-24
  9. Problêmes Pour Les Arpenteurs, Avec Differentes Solutions (French Edition) by Lorenzo Mascheroni, 2010-02-23
  10. Géométrie Du Compas (French Edition) by Lorenzo Mascheroni, 2010-01-12
  11. Mathematician Introduction: Grigory Barenblatt, Ivan Vidav, Lorenzo Mascheroni, Vladimir Batagelj, Matevz Bren, Giovanni Ceva, Chris Freiling
  12. Poesie Edite Ed Inedite Di Lorenzo Mascheroni (French Edition) by Lorenzo Mascheroni, 2010-03-24
  13. 1800 Deaths: Thomas Mifflin, Lorenzo Mascheroni, William Cowper, Daines Barrington, Louis-Jean-Marie Daubenton, John Rutledge
  14. Lorenzo Mascheroni. L'invito. Versi sciolti di Dafni Orobiano a Lesbia Cidonia.(Book Review): An article from: Italian Culture by Angelo Colombo, 2002-12-22

41. Mascheroni
Biography of lorenzo mascheroni (17501800) lorenzo mascheroni s parents wereMaria Ciribelli and Paolo mascheroni dell Olmo who was a wealthy landowner
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Mascheroni.html
Lorenzo Mascheroni
Born: 13 May 1750 in Bergamo, Lombardo-Veneto (now Italy)
Died: 14 July 1800 in Paris, France
Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Version for printing
Lorenzo Mascheroni 's parents were Maria Ciribelli and Paolo Mascheroni dell'Olmo who was a wealthy landowner. Mascheroni was educated with the aim of becoming a priest and he was ordained at the age of 17. At first he taught rhetoric then, from 1778, he taught physics and mathematics at the seminary at Bergamo. In 1786 Mascheroni became professor of algebra and geometry at the University of Pavia, mainly on the strength of his excellent work on statics Nuove ricerche su l'equilibrio delle volte which he had published one year earlier. Later, in 1789, he became rector of the university, holding the appointment for four years. During the years 1788 to 1791 he was head of the Accademia degli Affidati. In Adnotationes ad calculum integrale Euleri (1790) Mascheroni calculated Euler 's constant to 32 decimal places. In fact only the first 19 places were correct but the remaining places were corrected by Johann von Soldner in 1809. Despite the error in the calculation, Mascheroni's work shows a deep understanding of

42. Mascheroni, Lorenzo (1750-1800) -- From Eric Weisstein's World Of Scientific Bio
Branch of Science Mathematicians v Nationality Italian v. mascheroni,lorenzo (17501800). Italian mathematician. © Eric W. Weisstein. header
http://scienceworld.wolfram.com/biography/Mascheroni.html
Branch of Science Mathematicians Nationality Italian
Mascheroni, Lorenzo (1750-1800)

Italian mathematician.

43. MSN Encarta - Mascheroni, Lorenzo
Translate this page mascheroni, lorenzo (Castagneto, Bergamo 1750 - Parigi 1800), scienziato e poetaitaliano. Trova altre informazioni su mascheroni, lorenzo
http://it.encarta.msn.com/encyclopedia_221502167/Mascheroni_Lorenzo.html

44. Mohr-Mascheroni Theorem - Wikipedia, The Free Encyclopedia
In mathematics, the Mohrmascheroni theorem states that any geometric The theorem was independently discovered by lorenzo mascheroni in 1797.
http://en.wikipedia.org/wiki/Mohr-Mascheroni_theorem
Wikimedia needs your help in its 21-day fund drive. See our fundraising page
Over US$220,000 has been donated since the drive began on 19 August. Thank you for your generosity!
Mohr-Mascheroni theorem
From Wikipedia, the free encyclopedia.
In mathematics , the Mohr-Mascheroni theorem states that any geometric construction that can be performed by a ruler and compass can be performed by a compass alone. The result was originally published by Georg Mohr in , but his proof languished in obscurity until . The theorem was independently discovered by Lorenzo Mascheroni in edit
See also
edit
External links
geometry-related article is a stub . You can help Wikipedia by expanding it Retrieved from " http://en.wikipedia.org/wiki/Mohr-Mascheroni_theorem Categories Geometry Theorems ... Geometry stubs Views Personal tools Navigation Search Toolbox

45. MathsNet: Geometric Construction Course: Mascheroni Circle Only Constructs
mascheroni In 1797 an Italian geometer, lorenzo mascheroni, proved that everycompassand-straightedge construction can be done with a compass alone.
http://www.mathsnet.net/campus/construction/circleonly.html
Introduction
History

Thinking

Tech

ircle only constructions
Here is a menu of all the pages available: - Select - Foundation Intermediate Advanced Euclid sacred geometry Circle-only constructions Transformations Hidden world of... Classic problems Introduction Thinking A brief history... Sources Tech Buttons Tutors
Click on the above picture to return here. Which constructions are possible using only the circle construction tool
In 1797 an Italian geometer, Lorenzo Mascheroni, proved that every compass-and-straightedge construction can be done with a compass alone. For this reason such constructions are still called Mascheroni constructions Try these challenges. You will be constructing points and circles only - no lines. Some of the harder solutions are based on Martin Gardner's Mathematical Circus - see Sources Easier Harder Construct a symmetric point
Construct the equilateral triangle ABC

Construct a perpendicular

Double the length AB
... Construct a regular pentagon

46. Lorenzo Mascheroni -- Facts, Info, And Encyclopedia Article
lorenzo mascheroni (May 13, 1750 July 14, 1800) was an (A native or inhabitantof Italy) Italian (A person skilled in mathematics) mathematician,
http://www.absoluteastronomy.com/encyclopedia/l/lo/lorenzo_mascheroni.htm
Lorenzo Mascheroni
[Categories: People born in Bergamo, Italy, 18th century mathematicians, Italian mathematicians, 1800 deaths, 1750 births]
Lorenzo Mascheroni (May 13, 1750 - July 14, 1800) was an (A native or inhabitant of Italy) Italian (A person skilled in mathematics) mathematician , born near (Click link for more info and facts about Bergamo) Bergamo (A republic in southern Europe on the Italian Peninsula; was the core of the Roman Republic and the Roman Empire between the 4th century BC and the 5th century AD) Italy
At first mainly interested in the humanities (poetry and Greek language), he eventually became professor of mathematics at (Click link for more info and facts about Pavia) Pavia
In his Geometria del Compasso (Pavia, 1797), he proved that any geometrical construction which can be done with (Click link for more info and facts about ruler and compasses) ruler and compasses , can also be done with compasses alone. However, the priority for this result (now known as the (Click link for more info and facts about Mohr-Mascheroni theorem) Mohr-Mascheroni theorem ) belongs to the (A native or inhabitant of Denmark) Dane (Click link for more info and facts about Georg Mohr) Georg Mohr , who published a proof already in 1672.

47. Euler-Mascheroni Constant -- Facts, Info, And Encyclopedia Article
The Eulermascheroni constant appears, among other places, in and (Clicklink for more info and facts about lorenzo mascheroni) lorenzo mascheroni.
http://www.absoluteastronomy.com/encyclopedia/e/eu/euler-mascheroni_constant1.ht
Euler-Mascheroni constant
[Categories: Real numbers, Mathematical constants]
The Euler-Mascheroni constant is a (Click link for more info and facts about mathematical constant) mathematical constant , used mainly in (Click link for more info and facts about number theory) number theory , and is defined as the (The grammatical relation that exists when a word qualifies the meaning of the phrase) limiting difference between the (Click link for more info and facts about harmonic series) harmonic series and the (A logarithm to the base e) natural logarithm
Intriguingly, the constant is also given by the (The result of a mathematical integration; F(x) is the integral of f(x) if dF/dx = f(x)) integral
Its value is approximately
(An integer or a fraction) rational number or not. However, (A fraction whose numerator is an integer and whose denominator is an integer plus a fraction whose numerator is an integer and whose denominator is an integer plus a fraction and so on) continued fraction
The Euler-Mascheroni constant appears, among other places, in:
a product formula for the (Click link for more info and facts about gamma function) gamma function
calculations of the (Click link for more info and facts about digamma function) digamma function
calculation of the (Click link for more info and facts about Meissel-Mertens constant) Meissel-Mertens constant
expressions involving the (Click link for more info and facts about exponential integral) exponential integral
the first term of the (Click link for more info and facts about Taylor series)

48. Mascheroni Constructions
In 1797, an Italian mathematician named lorenzo mascheroni, proved that anyconstruction that can be done with compass and straightedge, can be done with
http://www.geocities.com/robinhuiscool/mascheroni.html
M A S C H E R O N I
CONSTRUCTIONS
In 1797, an Italian mathematician named Lorenzo Mascheroni , proved that any construction that can be done with compass and straightedge, can be done with compass alone. Since then, such constructions have been called Mascheroni Constructions
Bisecting a Line
Constructing a Square
See a Mascheroni Construction for a Pentagon

49. Italian Culture: Lorenzo Mascheroni. L'invito. Versi Sciolti Di Dafni Orobiano A
Access the article, lorenzo mascheroni. L invito. Versi sciolti di Dafni Orobianoa Lesbia Cidonia from Italian Culture, a publication in the field of
http://www.findarticles.com/p/articles/mi_go2977/is_200212/ai_n7456555
@import url(/css/us/style1.css); @import url(/css/us/searchResult1.css); @import url(/css/us/articles.css); @import url(/css/us/artHome1.css); Advanced Search Home Help
IN free articles only all articles this publication Automotive Sports 10,000,000 articles - not found on any other search engine. FindArticles Italian Culture December 2002 Content provided in partnership with
10,000,000 articles Not found on any other search engine. Featured Titles for
ASA News
ASEE Prism Academe African American Review ... View all titles in this topic Hot New Articles by Topic Automotive Sports Top Articles Ever by Topic Automotive Sports
Save a personal copy of any page on the Web and quickly find it again with Furl.net. It's free. Get started now. Lorenzo Mascheroni. L'invito. Versi sciolti di Dafni Orobiano a Lesbia Cidonia Italian Culture December, 2002 by Angelo Colombo Spesso ricordato nei sommari di storia letteraria correnti ma quasi mal attentamente riletto ai nostri giomi, l'Invito a Lesbia Cidonia di Lorenzo Mascheroni (Bergamo 1750-Parigi 1800, in Arcadia Dafni Orobiano), matematico e docente all'Universita di Pavia, non e passato senza lasciare traccia fra i contemporanei e i cultori del verso sciolto negli anni che accompagnarono il declino dell'antico regime e il principio dell'eta napoleonica. L'autorevole Parini, adusato a un lavoro ... Want to read the whole article? You can

50. From JFWD89A@prodigy.com (Donald Forbes) Newsgroups Sci.math
Date 29 Mar 1996 161747 GMT There is a reference in EDM2 (Encyc Dict ofMath, MIT, 1993) to lorenzo mascheroni (note spelling) 17501800.
http://www.math.niu.edu/~rusin/known-math/96/mascheroni
From: JFWD89A@prodigy.com (Donald Forbes) Newsgroups: sci.math Subject: Re: The life and works of Lorenzo Mascharoni Date: 29 Mar 1996 16:17:47 GMT There is a reference in EDM2 (Encyc Dict of Math, MIT, 1993) to Lorenzo Mascheroni (note spelling) [1750-1800]. "If by drawing a straight line we mean the process of finding two different points on that line, then we can solve all the problems of elementary geometric construction by means of compass alone (G. Mohr, L. Mascheroni)......

51. "MASCHERONI, Lorenzo;GRATOGNINI, Giovanni;", Esame Analitico Di Un Paradosso Pro

http://www.polybiblio.com/basane/1666.html
Librairie Thomas-Scheler
"MASCHERONI, Lorenzo;GRATOGNINI, Giovanni;" Esame analitico di un paradosso proposto al geometri dal sig. d'Alembert, e della soluzione datane dal ch. sig. ab. Don Lorenzo Mascheroni. Pavia Monastero di S. Salvatore 1790 In-8 de 2 ff.n.ch. (dont un bl.), 59 pp.ch. et 1 pl.; br. D.S.B. IX, 156; Ricardi, I, M-132. Edition originale. Parmi les problèmes que Mascheroni avait résolus dans ses Annotazioni al Calculo Integrale dell'Eulero se trouve la soluzione di certo paradosso già proposto al Geometri dal Grande d'Alembert. Bon exemplaire dans sa brochure d'origine. This item is listed on Bibliopoly by Librairie Thomas-Scheler ; click here for further details.

52. Math Lessons - Lorenzo Mascheroni
Math Lessons lorenzo mascheroni. However, the priority for this result (nowknown as the Mohr-mascheroni theorem) belongs to the Dane Georg Mohr,
http://www.mathdaily.com/lessons/Lorenzo_Mascheroni
Search
Mathematics Encyclopedia and Lessons
Lessons
Popular Subjects
algebra arithmetic calculus equations ... more
References
applied mathematics mathematical games mathematicians more ... People born in Bergamo, Italy
Lorenzo Mascheroni
Lorenzo Mascheroni May 13 July 14 ) was an Italian mathematician , born near Bergamo Italy At first mainly interested in the humanities (poetry and Greek language), he eventually became professor of mathematics at Pavia In his Geometria del Compasso (Pavia, 1797), he proved that any geometrical construction which can be done with ruler and compasses , can also be done with compasses alone. However, the priority for this result (now known as the Mohr-Mascheroni theorem ) belongs to the Dane Georg Mohr , who published a proof already in 1672. In his Adnotationes ad calculum integrale Euleri (1790) he published a calculation of what is now known as the Euler-Mascheroni constant He died in Paris
External link
Categories 1750 births 1800 deaths Italian mathematicians ... People born in Bergamo, Italy Last updated: 09-02-2005 16:50:46 algebra arithmetic calculus equations ... mathematicians

53. Biografia De Mascheroni, Lorenzo
Translate this page mascheroni, lorenzo. (Castagneta, Bérgamo, 1750-París, 1800) Matemático italiano.Fue profesor en el seminario de Bérgamo y en la Universidad de Pavía.
http://www.biografiasyvidas.com/biografia/m/mascheroni.htm
Inicio Buscador Las figuras clave de la historia Reportajes Los protagonistas de la actualidad Mascheroni, Lorenzo (Castagneta, Bérgamo, 1750-París, 1800) Matemático italiano. Fue profesor en el seminario de Bérgamo y en la Universidad de Pavía. Destaca su obra Geometria del compasso (1797), escrita en verso y dedicada a Napoleón, en la que mostró que todas las construcciones planas realizadas con regla y compás eran susceptibles de obtenerse sólo con el compás. Inicio Buscador Recomendar sitio

54. Lorenz Curve Income Line Perfect Inequality Percentage Equality
productions until the smashi, lorenzo mascheronilorenzo mascheroni ( May 13,1750 July 14, 1800) was an Italian mathematician, born near Bergamo, Italy.
http://www.economicexpert.com/a/Lorenz:curve.htm
var GLB_RIS='http://www.economicexpert.com';var GLB_RIR='/cincshared/external';var GLB_MMS='http://www.economicexpert.com';var GLB_MIR='/site/image';GLB_MML='/'; document.write(''); document.write(''); document.write(''); document.write(''); A1('s',':','html'); Non User A B C ...
Home
The Lorenz curve was developed by Max O. Lorenz as a graphical representation of income inequality . It can also be used to measure inequality of asset s or other distribution s. In discussions of personal income, we frequently make statements such as, "the bottom twenty percent of all households have ten percent of the total income". The Lorenz curve is based on such statements; every point on the curve represents one such statement. The Lorenz curve is a graph that shows, for the bottom x % of households, the percentage y % of the total income which they have. The percentage of households is plotted on the x -axis, the percentage of income on the y -axis. A perfectly equal income distribution in a society would be one in which every person has the same income. In this case, the bottom N % of society would always have N % of the income. Thus a perfectly equal distribution can be depicted by the straight line

55. Geometric Construction With The Compass Alone
be accomplished with a compass is due to lorenzo mascheroni (17501800) and A proof to the mascheroni result will emerge as a combination of the
http://www.cut-the-knot.com/do_you_know/compass.shtml
Username: Password: Sites for teachers
Sites for parents

Awards

Interactive Activities
...
Sites for parents
Geometric Construction with the Compass Alone
Everything you can do with a ruler and a compass you can do with the compass alone. Well, not everything. For example, you can't draw straight lines using a compass. There is no talking about it. However, you can do everything reasonable. I hope you would find this claim no less remarkable. In what is known as the Geometry of Compass , a straight line is defined by any pair of two points. Starting with two points, other points can be constructed with compass alone. Thus in the following constructing a straight line means finding two points that belong to that line.
Remark
There are geometries in which the ruler is never used to start with. E. g., in finite geometries that only contain a finite number of points and lines, a line is just a (finite) collection of points. On the sphere, the role of straight lines is played by the great circles. The question of geometric construction with the compass alone is not concerned with such kinds of geometries. Geometry of Compass only deals with constructions in the Euclidean plane, and its basic question could be formulated as, What ruler-and-compass constructions could be accomplished with the compass alone?

56. Liceo Scientifico Statale "Lorenzo Mascheroni" - Bergamo
Translate this page
http://www.liceomascheroni.it/

57. Euler-Mascheroni Constant - Definition Of Euler-Mascheroni Constant In Encyclope
The Eulermascheroni constant is a mathematical constant, used mainly in It is named for the mathematicians Leonhard Euler and lorenzo mascheroni.
http://encyclopedia.laborlawtalk.com/Euler-Mascheroni_constant
Add to Favorites
General
Encyclopedia Legal ... Law forum Search Word: Visit our Law forums
The Euler-Mascheroni constant is a mathematical constant , used mainly in number theory , and is defined as the limiting difference between the harmonic series and the natural logarithm Intriguingly, the constant is also given by the integral Its value is approximately rational number or not. However, continued fraction The Euler-Mascheroni constant appears, among other places, in: It is named for the mathematicians Leonhard Euler and Lorenzo Mascheroni
External link

This article is licensed under the GNU Free Documentation License . It uses material from the Wikipedia article "Euler-Mascheroni_constant" Browse Euler Eugenio Pacelli Euler-Mascheroni constant Eumenides ... eunuchoidism Search Word: General Encyclopedia Legal Medical Computer Science Law Forum Embed a dictionary search in your own web page Link to Us Advertise Add to Favorites ...
Legal notices

58. Mascheroni
lorenzo mascheroni. Da qui lo scontro con mascheroni che se ne andò, accettando di occupare la
http://www.bergamoestoria.org/lavori/cdmultimed/medie/mascheroni.htm
Lorenzo Mascheroni Figura fondamentale nella storia dell'istruzione a Bergamo fu l'abate Lorenzo Mascheroni. Lavorò al Collegio Mariano (che diventò in seguito Liceo ) e all'Università di Pavia. Iniziò insegnando retorica, poi lettere e filosofia (questa comprendeva la logica, la metafisica e la fisica), infine matematica. A quel tempo le discipline matematiche erano ritenute le meno importanti, ma proprio il Mascheroni cercò di dare rilievo a fisica, chimica, geometria e astronomia perché aveva fiducia nel progresso delle scienze e nel metodo sperimentale iniziato da Galileo. Questo lo mise in contrasto con il clero, soprattutto con i gesuiti e il vescovo di Bergamo Dolfin. Quest'ultimo visitò le cosidette "Macchine della Misericordia" (a fianco si può ammirare un particolare della Macchina del Cosmo dell' Albricci ) con le quali si insegnavano la fisica e l'astronomia nel Collegio Mariano, ma le trovò contrarie alla religione. Da qui lo scontro con Mascheroni che se ne andò, accettando di occupare la cattedra di matematica e algebra all'Università di Pavia. Istruzione Cultura Assistenza

59. Scuole
A tal proposito lorenzo mascheroni nel Piano del 1798 afferma Se gli
http://www.bergamoestoria.org/lavori/cdmultimed/lav_ins_elem/classisociali/scuol
Struttura politica: continua il percorso ritorna all' inizio del percorso Rivoluzione Struttura politica Classi sociali Cronologia ... Glossario SCUOLE Dalla fine del 700 all’inizio dell’800 la cultura restava una prerogativa della classe dirigente (nobili, clero, borghesia).L’abate Lorenzo Mascheroni presidente della "Società di Pubblica Istruzione di Bergamo" sosteneva che l’istruzione pubblica è la base fondamentale di tutte le democrazie (proclama del 21 aprile 1797). "Noi ci professiamo i sacerdoti di questa libertà. Ma per essere liberi "bisogna conoscere particolarmente in che consiste quell’eguaglianza e quella indipendenza supremo dono della divinità, che serve tanto alla felicità de’ viventi, allorchè e’ ben diretta, e che li precipita nel baratro dell’errore e delle seduzioni allorchè è mal intesa. In breve, bisogna istruire quel popolo che d’ora innanzi dee regnar sovranamente, e che si facea rimaner avvilito nell’ignoranza allorchè era destinato a servire". Per prima cosa bisogna "sollevare" i poveri: la Società "cercherà di sollevar l’oppresso, di soccorrer la vergine pudibonda e l’orfano derelitto; ella stenderà la mano pietosa al vecchio languente, asciugherà le lacrime della vedova, e porterà i reclami di tutti i Cittadini presso le vostre autorità costituite". Il piano del Mascheroni, mai attuato, oltre a un indirizzo, prevalentemente scientifico, dei programmi, prevedeva il passaggio nelle mani dello Stato di tutti gli ordini di scuole e la contemporanea eliminazione degli istituti religiosi.

60. Sources For The Math Symbols And Words Pages
mascheroni, lorenzo. Adnotationes ad calculum integralem Euleri In quibusnonnulla problemata ab Eulero proposita resolvuntur Auctore Laurentio
http://members.aol.com/jeff570/sources.html
Sources for the Math Symbols and Words Pages
Abbreviations: OED2 refers to the Oxford English Dictionary, Second Edition; MWCD10 is Merriam-Webster's Collegiate Dictionary, Tenth Edition; RHUD2 refers to the Random House Dictionary of the English Language, Second Edition Unabridged. If the earliest use of a word known to Webster is its appearance in a dictionary, the date is preceded by "ca."; in those cases, it can be assumed earlier uses of those words exist. JSTOR refers to the web site http://www.jstor.org/ The following written sources have been used. Abbott, David, general editor. The Biographical Dictionary of Scientists: Mathematicians. New York: Peter Bedrick Books, 1985. Aldrich, J. Doing least squares: perspectives from Gauss and Yule. International. Statistical Review, Aldrich, J. (1995) "Correlations Genuine and Spurious in Pearson and Yule," Statistical Science, Aldrich, J. The Language of the English Biometric School, International Statistical Review, Vol. 71(1), pp. 109-131, (2003). Asimov, Isaac.

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 3     41-60 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

free hit counter