Geometry.Net - the online learning center
Home  - Scientists - Lexell Anders
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Lexell Anders:     more detail
  1. Finnish Astronomers: Yrjö Väisälä, Anders Johan Lexell, Liisi Oterma, Esko Valtaoja, Mauri Valtonen, Nils Mustelin, Arto Oksanen

61. Genos 32(1961), S. 61-69 (Lexell)
silhuett, Akademikern anders Johan lexell (17401784). Silhuett av F. Anting 1784.Original i Vetenskapsakademins arkiv (Moskva), som välvilligt ställt en
http://www.genealogia.fi/genos/32/32_61.htm
Artikelns slut
Lexell
Fil.mag. H UGO L AGSTRÖM , Björneborg
På Lexe gård invid Gävle i Sverige bodde under senare delen av 1600-talet bonden Jon(as) och hans hustru Anna Olofsdotter. Två av deras söner gick läsvägen: den äldre, Olaus Jonae Lexelius, inskrevs som student i Uppsala år 1690, den yngre, Johannes Jonae Lexelius, tretton år senare. Olaus Lexelius blev slutligen komminister i Jakob och Johannes församling i Stockholm, medan Johannes Lexelius slutade sina dagar som kyrkoherde i Öregrund år 1765. Om den senares barn har G UNNAR H ÄLLSTRÖM i sitt herdaminne kunnat ge tämligen kompletta uppgifter, medan han om Olaus Lexelii familjeförhållanden har blott sporadiska kunskaper. Han känner till hustruns namn Elisabeth Almgren och uppräknar fyra barn, vilkas öden dock - utom, en i späd ålder död dotters - förblir obekanta. Han framkastar dock den förmodan, att den pärlfiskeriinspektör Jonas Lexelius (sic!), som gifter sig i Åbo 1740 vore identisk med komministerns äldsta son Jonas, f. 1699.[ ] I sitt stora verk om Finlands guldsmeder säger T YRA B ORG , att juveleraren (guldarbetaren) i Åbo Jonas Lexell var son till en kapellan i St. Jakob och född i Stockholm år 1699.[

62. Transit Of Venus Bibliography
anders Johan lexell, Disquisitio de inuestiganda vera quantitate parallaxeossolis, ex transitu Veneris ante discum solis anno 1769, cui accedunt
http://www.phys.uu.nl/~vgent/venus/venus_text8.htm
I am always grateful for further references and additions that have escaped my notice. Contact me at: Robert H. van Gent E-mail: I am grateful to Wilbur Applebaum, Robert B. Ariail, John W. Briggs, Matt Considine, Brenda Corbin (U.S. Naval Observatory), Wilmar Duerbeck, John Harper, Aarnout Helb, Gunther Konnen (Royal Dutch Meteorological Institute, De Bilt), Hans Lausch (Monash University, Melbourne), Steven M. van Roode (Bergen op Zoom), David Sellers, Felice Stoppa and Marina Zuccoli (Dept. of Astronomy, University of Bologna) for additions and corrections. ?, “Other results during the transit of 1874”, The Observatory ?, “Photographic results and expense of the transit of 1874”, The Observatory ?, “Stations for the transit of 1882”, The Observatory ?, “Use of photography for the transit of 1882”, The Observatory ?, “Paris conference on the transit of 1882”, The Observatory ?, “Arrangements for the transit of 1882”, The Observatory ?, “List of names of observers of the transit of 1882”, The Observatory ?, “First reports of the transit of 1882”

63. Archivio Storico Del Dipartimento Di Atronomia - Progetto Scienza Per Tutti
Translate this page lexell, anders Johan Disquisitio de inuestiganda vera quantitate parallaxeossolis, ex transitu Veneris ante discum solis anno 1769, cui accedunt
http://www.bo.astro.it/~biblio/sma/page/venere_1769.html
Il transito di Venere del 1769
Bibliografia
  • Hell, Maximilian
    Observatio transitus Veneris ante discum Solis die 3 Junii anno 1769. ... Facta, et Societati reg. scientiarum Hafniensi praelecta, a r. p. Maximiliano Hell.
    Vindobonae, typis Joannis Thomae Nob. De Trattnern, 1770
    Lexell, Anders Johan
    Disquisitio de inuestiganda vera quantitate parallaxeos solis, ex transitu Veneris ante discum solis anno 1769, cui accedunt animaduersiones in tractatum ... De parallaxi solis. Auctore Andrea Joh. Lexell.
    Petropoli, typis Academiae Imperialis Scientiarum, 1772
    Mayer, Christian
    Ad augustissimam Russiarum omnium imperatricem Catharinam II. Alexiewnam Expositio de transitu Veneris ante discum Solis d. 23 Maii, 1769.
    Petropoli, typis Academiae Scientiarum, 1769
  • Mayer, Christian Collectio omnium obseruationum quae occasione transitus Veneris per solem a. 1769. iussu Augustae per imperium Russicum institutae fuerunt vna cum theoria indeque deductis conclusionibus. Petropoli, typis Academias Scientiarum, 1769
  • Pingre, Alexandre Gui
  • 64. Nyheter
    Om Ni behöver hjälp under denna tid så kan Ni ringa till anders lexell, För mer information kontakta anders lexell, tel. 0855 630 631. Tillbaka
    http://www.grafu.se/html/nyheter/nyheter_main.html
    Datum Nyhetsrubrik GraFu flyttar till nya lokaler Lokalkontor i Norrland Koppling mellan Grafisk planering/EQ-Plan och GraFu-Kalk Testa GraFu-Webb Grafisk planering/EQ-Plan GraFu och Vis-able Koppling till Grafisk Planering/EQ-Plan Hogia-koppling klar GraFu
    Tillbaka
    GraFu flyttar till nya lokaler Linbanegatan 10 Box 833 Vi har samma telefonnummer: . Vi byter dock faxnr:
    Vi har naturligtvis samma postgiro, bankgiro, organisationsnummer, webbadress och epostadresser! Tillbaka Tillbaka 24 december t o m 6 januari Anders Lexell eller RIKTIGT GOD JUL OCH Tillbaka Tillbaka Lokalkontor i Norrland Tillbaka lokalkontor, GraFu-syd,
    grafu-syd@grafu.se

    Tillbaka
    och GraFus nyhetsbrev. Tillbaka Koppling mellan Grafisk planering/EQ Plan och GraFu-Kalk Tillbaka Testa GraFu-Webb Nu kan alla testa GraFu-Webb direkt från vår hemsida. Gå in på "testkör GraFu-Webb online", som ligger på vår första sida, följ sedan instruktionen och testa programmet. Tillbaka Grafisk planering/EQ Plan http://www.timemetrics.se

    65. Tähtitieteen Peruskurssi I / Rami Rekola 2002
    anders Johan lexell (17401784). Taivaanmekaniikka oli tiedemiesten erityisenmielenkiinnon kohteena erityisesti 1700-luvulla.
    http://www.astro.utu.fi/kurssit/ttpk1/ttpkI/22Suomi.html
    Suomen tähtitiede
    Rooman keisarikunnan luhistumisen ja Länsi-Rooman näivettymisen seurauksena kreikkalais-roomalainen koulutusjärjestelmä romahti. 700-luvulle mennessä tilalle oli perustettu kristillisten latinakoulujen eli kymnaasi en verkosto. Katolisen kirkon piispat kannustivat niiden perustamiseen, minkä vuoksi niitä kutsuttiin katedraalikoulu iksi (katedraali on piispan johtaman hiippakunnan pääkirkko). Vähäisempää opetusta oli tarjolla luostarikouluissa; nunnaluostarit olivat tyttöjen ainoa mahdollisuus saada opetusta, sillä katedraalikoulujen kaikki oppilaat olivat poikia. Useimmat pojista astuivat kirkon palvelukseen.
    Katedraalikoulujen opetuksen taso ei ollut järin korkea ja pyrkimyksenä tarjota parempaa opetusta papeille ja munkeille perustettiin studia generalia , jotka – nimensä mukaisesti – olivat avoimia opiskelijoille eri puolilta Eurooppaa.
    Yliopistot, universitas , olivat aluksi studia generaliassa samasta maasta tulleiden opiskelijoiden yhteenliittymiä (tavallaan samankaltaisia kuin osakunnat nykyään). 1200-luvulle tultaessa yliopistot olivat kehittyneet laitoksiksi, joilla oli hallinnollisia tehtäviä, ja 1300-luvulla ne olivat opettajien ja tutkijoiden yhteisöjä, joilla oli valtion tai kirkon valtuutus toiminnalleen. Varhaisilla yliopistoilla ei ollut juurikaan omistuksia (maata, rakennuksia, tms.) ja monet yliopistot saivatkin alkunsa aiempaan yliopistoonsa tyytymättömien opiskelijoiden ja tutkijoiden siirtyessä toiseen kaupunkiin (esim. Cambridge syntyi näin Oxfordista lähteneiden opiskelijoiden toimesta).

    66. Tähtitieteen Peruskurssi I / Rami Rekola 2002
    Pietarin akatemiassa toiminut suomalaissyntyinen anders lexell (17401784) olikeväällä 1781 vierailulla Lontoossa ja tutustui havaintoihin.
    http://www.astro.utu.fi/kurssit/ttpk1/ttpkI/13Aurinkokunta.html
    Aurinkokunta
    1700-luvulle asti tähtitiede liittyi lähes pelkästään aurinkokuntaan ja erityisesti sen kappaleiden liikkeisiin. Renessanssin perintönä mukaan kuvaan tulivat myös planeettojen fysikaaliset ominaisuudet.
    Yksi ensimmäisiä kaukoputkenhankkijan havaintokohteita on Kuu eikä Galilei kaan ollut tästä poikkeus. Hän totesi, ettei Kuu ole aristoteelinen sileä pallo vaan siellä on samankaltaisia pinnanmuodostelmia kuin Maassakin. Jo aiemmin Plutarkhos Alhazen eli Abu ‘ali al-Hasan ibn al-Haytham (965-1039) ja Leonardo da Vinci (1452-1519) olivat esittäneet, että Kuun pinnan täytyy muistuttaa Maan pintaa.
    Tammikuussa 1610 Galilei havaitsi kaukoputkellaan kolme tähteä Jupiterin vieressä samalla suoralla. Myöhemmin hän havaitsi vielä neljännen. Nämä tähdet liikkuivat Jupiterin suhteen, mutta pysyivät aina sen lähellä. Vaikka kutsuikin kappaleita tähdiksi, ymmärsi Galilei , että ne kiersivät Jupiteria. Sittemmin nimityksellä Galilein kuut tunnetut Jupiterin neljä suurinta kuuta olivat ensimmäinen todiste, että muillakin kappaleilla kuin Maalla oli kiertolaisia. Samaan aikaan Galilei n kanssa kuut havainnut saksalainen Simon Marius (1573-1624) mittasi tätä tarkemmin kuiden kiertoajat ja hänen niille antamansa nimet (Io, Europa, Ganymedes, Kallisto) vakiintuivat viralliseen käyttöön. Myös englantilainen

    67. Tumbling Stone 2 - Focus On Comets: Lexell
    (the history of lexell comet will be continued in the next number). anders lexell (sometimes known by the Russian version of his name, Andrei Ivanovich
    http://spaceguard.rm.iasf.cnr.it/tumblingstone/issues/num2/comet.htm
    Understanding of cosmic motion in 1700
    A comet heading towards Earth: the first NEO
    by Giovanni Valsecchi
    M any of the ideas at the heart of our current understanding of the motion of NEOs date back to the XVIIIth and XIXth century, and are based on the study of the orbit of a single, exceptional body, the comet discovered on the night between 14 and 15 June 1770 by Messier, one of the most famous comet hunters of all times ( click here to know more about comets
    T he comet was heading right towards the Earth; within a few days, starting from 21 June, it became visible to the naked eye, reaching the second magnitude three days later. The minimum distance from the Earth was reached on 1 July, at about six times the lunar distance, and in a few more days the comet became not visible due to its proximity to the Sun; Pingré computed an ephemeris for its recovery based on a parabolic orbit, as it was then customary, and Messier was able to see the comet again starting from the beginning of August.
    Charles Messier T he comet was then observed until the first days of October. A serious problem soon became clear to astronomers: although the ephemeris by Pingre' had allowed the recovery of the comet in August, it was clearly incapable of accounting for the entire set of observations. Prosperin tried to use three parabolas to fit separately the observations of June, August, and September, but this was evidently unsatisfactory, and unjustifiable from the point of view of celestial mechanics.

    68. Tumbling Stone 3 - Comet Lexell- Part2
    The work of Johann anders lexell on the periodic comet that bears his name wasbrilliant and innovative, but did not put an end to the investigations on the
    http://spaceguard.rm.iasf.cnr.it/tumblingstone/issues/num3/lexell2.htm
    Focus on Comet Lexell (second part- continued from TS number 2
    Le Verrier's computations and the concept of Chaos
    T he work of Johann Anders Lexell on the periodic comet that bears his name was brilliant and innovative, but did not put an end to the investigations on the motion of that extraordinary object. About seventy years later, in the early forties of the XIX century, Urbain Le Verrier reexamined the subject from the beginning, asking himself a question that previous astronomers had essentially avoided. The question was about the reliability of the orbit computed for the comet: did the available observations determine uniquely the orbital elements? ( click here to know more about the orbital elements
    A t that time the work of Gauss on the recovery of the first asteroid, Ceres ( see T.S. number 1: " Ceres: the missing planet?" ), was a `fait accompli' and, as a consequence, the quantitative treatment of observational errors in the determination of orbits had become a well posed mathematical problem. While working on comet Lexell, Le Verrier was also working on the determination of the orbit of the planet perturbing Uranus. When that planet was discovered (and named Neptune), at the end of the decade, Le Verrier became a celebrity.
    A portrait of Le Verrier L et us go back to Lexell's comet. Le Verrier critically examined again the available observations, and identified a subset of them that he trusted; he then tried to compute an accurate orbit for the comet, taking also into account the gravitational action of the Earth. After many computations, described in detail in his papers of 1844, 1848 and 1857, he realized that it was not possible to determine a unique `best' orbit for the comet, since the constraints given by the observations were insufficient.

    69. BODE'S LAW AND THE DISCOVERY OF CERES
    anders Johan lexell, a Finnishborn professor of mathematics at St lexell derived for the radius of the orbit the excellent value of 18.93 AU - that
    http://www.astropa.unipa.it/versione_inglese/Hystory/BODE'S_LAW.htm
    OSSERVATORIO ASTRONOMICO DI PALERMO GIUSEPPE S. VAIANA
    BODE'S LAW AND THE DISCOVERY OF CERES by
    Michael Hoskin
    Churchill College, Cambridge
    Copernicus Kepler Dynamical Explanations of the Mars/Jupiter Gap The Possibility of Undiscovered Planets ... Piazzi and the Discovery of Ceres

    1. Copernicus
    When Copernicus's De revolutionibus appeared in 1543, it was valued by the professionals for its innovative planetary models rather than for anything it might have to say about which body is at the centre of the universe. In a volume dominated by complex geometry, and introduced by a misleading preface inserted without the author's authority to the effect that what followed was guided by the search for accuracy and convenience rather than the quest for truth, the cosmological Book I was largely overlooked. In Book I Copernicus shows in broad, qualitative terms, how so many of the hitherto-puzzling features of the observed motions of these `wandering stars' - such as their retrogressions - are readily explained if one begins from the assumption that the Earth is an ordinary planet orbiting the Sun. The planetary system is represented by Copernicus in simplified form in his famous diagram in Book I. But his figure is not to scale. A scale representation would have made it obvious that there is an astonishing gap between the orbit of the fourth planet, Mars, and that of the fifth, Jupiter.

    70. AAL Homepage
    Translate this page Nach einer anfänglichen Vermutung, es könnte sich hierbei um einen Kometen handeln,zeigte der schwedische Mathematiker anders lexell (1740 –1784),
    http://www.aal.lu/SPECIAL_TOPIC/4/
    MAIN PAGE ABOUT US EVENTS GALLERY ... ARCHIVE Tip:
    Wa Fändelen uewen lenks am Eck sin kann een d'Sprooch wielen Special Topic ARTICLE: Entdecker des Sonnensystems
    by
    Notizen zum gleichnamigen Vortrag von Tom Müller
    gehalten am 14. Oktober 2000 im Vereinslokal der AAL in Düdelingen (L)
    1. Vorbemerkung

    Die folgende Vortragsnotiz fasst die wichtigsten Konzepte und wissenschaftlichen Entdeckungen (in bezug auf das Sonnensystem) zusammen, die im Laufe der letzten fünfhundert Jahren ausgearbeitet und überliefert wurden.
    Dabei wird bewußt darauf verzichtet, im Detail auf die jeweiligen politischen und religiösen Hintergrunde einzugehen, die im Laufe dieser Zeit vorherrschten und sich teilweise hemmend, teilweise fördernd auf die Entwicklung der Astronomie und der Naturwissenschaften im allgemeinen ausgewirkt haben. Die eigentliche Abhandlung wird durch zahlreiche Fussnoten ergänzt, die sich vor allem an jüngere Leser und Neulinge auf dem Gebiet der Astronomie richten, sowie durch einen mathematischen Anhang im Anschluss an den Hauptteil abgerundet.

    71. Herschel
    anders lexell calcula son orbite et trouvaque la tâche avait une orbite presque circulaire avec un rayon 19 fois plus
    http://gibouin.club.fr/histoire/herschel.htm
    WILLIAM HERSCHEL William Herschel naquit à Hanovre (Allemagne) le 15 novembre 1738. En 1757, il émigre en Angleterre suite à la défaite infligée à l'armée de Hanovre par l'armée française. En 1766, il devint titulaire de l'orgue de Bath. Mas il est surtout attiré par la philosophie et les mathématiques. En 1773, il loua un télescope. Mais celui-ci lui coûtant trop cher, il décida de s'en fabriquer un. Ainsi il obtint un télescope de 47,5 cm de diamètre et de 6 mètres de focale. En 1776, Herschel décida d'explorer tous les objets visibles de son télescope. Il découvrit ainsi les calottes polaires de Mars et quelques étoiles doubles. Mais sa plus grande découverte fut celle du 13 mars 1781 : ce jour-là, Herschel découvrit une tâche lumineuse dans la constellation des Gémeaux . Prise tout d'abord pour une comète, Anders Lexell calcula son orbite et trouva que la tâche avait une orbite presque circulaire avec un rayon 19 fois plus grand que celui de la Terre. Il s'agissait donc d'une planète. D'abord appelée "Georgium Sidus" en hommage au roi d'Angleterre George III, le nom d' Uranus fut finalement retenu. Grâce à cette découverte, il fut admis à la Royal Society qui lui décerna la Copley Medal.

    72. Encyclopedia: Anders Johan Lexell
    Encyclopedia 1770Anders Johan lexell (December 24, 1740 – December 11, 1784 (Julian calendarNovember 30)) was a SwedishRussian astronomer and mathematician.
    http://www.nationmaster.com/encyclopedia/Anders-Johan-Lexell

    Supporter Benefits
    Signup Login Sources ... Pies
    What's new?
  • Our next offering Latest newsletter Student area Lesson plans
  • Recent Updates
  • Swamp troopers Surefire Supernova Subjunctive mood ...
  • More Recent Articles Top Graphs
  • Richest Most Murderous Most Taxed Most Populous ...
  • More Stats
    Encyclopedia: Anders Johan Lexell
    Updated 213 days 22 hours 48 minutes ago. Other descriptions of Anders Johan Lexell Anders Johan Lexell December 24 December 11 Julian calendar November 30 )) was a Swedish_Russian astronomer and mathematician . In Russian he is known as Andrei Ivanovich Leksel Anders Johann Lexell or even Johann Anders Lexell He emigrated to Russia in . He studied the motions of comets . He computed the orbit of comet D/1770 L1 (Lexell), and it is named after him although it was discovered by Charles Messier . This comet made the closest known approach to Earth by any comet in history (although asteroids have come closer), making it the first known near-Earth object ; the exact distance is not known but has been estimated to have been within 3 million km. The comet was later ejected from the solar system by a close encounter with Jupiter He was also the first to compute the orbit of Uranus soon after its discovery and realized from its orbit that it was a planet rather than a comet. He also found that Uranus was being perturbed and deduced the existence of another planet (the eventual

    73. Janus: Papers Of Nevil Maskelyne
    Doc 5, ALs, in French, to Nevil Maskelyne from anders Johan lexell, St Petersburg.Discusses astronomical observations and articles in journals by other
    http://janus.lib.cam.ac.uk/db/node.xsp?id=EAD/GBR/0275/Maskelyne/Doc 1 - 9

    74. Urano
    Translate this page Baseado nas primeiras observações, o astrônomo anders lexell calculou a órbitado corpo como sendo circular. Quem sugeriu o nome Urano ao planeta foi Johann
    http://www.geocities.com/CapeCanaveral/Launchpad/8602/astro/urano.html
    Urano raio equatorial = 26320 km
    massa = 8,70E25 kg = 14,56 massas terrestres = 1/22869 massas solares
    densidade = 1,1 g/cm^3
    período de rotação = 17 h 14 min
    inclinação do equador
    achatamento
    temperatura
    = 65 K
    albedo geométrico

    magnitude absoluta

    número de satélites conhecidos
    Urano foi descoberto em 1781 pelo astrônomo amador William Herschel, que pensou inicialmente que se tratava de um cometa. O movimento lento indicava que o corpo estava além da órbita de Saturno. Baseado nas primeiras observações, o astrônomo Anders Lexell calculou a órbita do corpo como sendo circular. Quem sugeriu o nome Urano ao planeta foi Johann Bode, mas passaram cinco décadas até que o nome fosse completamente aceito.
    Urano se encontra a uma distância média de 19 UA do Sol e leva 84 anos para completar uma revolução em torno do Sol. A inclinação de seu eixo de rotação é de 98°, o que faz com que um dos polos fique iluminado e o outro não por décadas. Seu período de rotação é 17.3 horas. Quando visto através de telescópio, o planeta apresenta uma coloração esverdeada, esta cor se deve a existência de metano em sua atmosfera. A estrutura interna de Urano é prevista como sendo diferente dos outros planetas gasosos. Há um núcleo rochoso e ao redor deste há uma camada de água, esta por sua vez fica envolta por um manto formado por hidrogênio e hélio. Urano possui campo magnético, a existência deste é devido a existência da mistura de água, metano e amônia no interior do planeta, que devido a alta pressão se dissociam em íons, fazendo com que o meio se torne um eletrólito; as correntes de convecção existentes neste meio são as geradoras do campo magnético. A intensidade do campo magnético no topo das nuvens é similar ao terrestre, mas como Urano é maior que a Terra, a força de seu campo magnético é maior. O campo magnético de Urano está inclinado 60° com relação ao eixo de rotação, sendo o planeta onde esta inclinação é máxima.

    75. ☼ Astronomie : Rotation De La Planète Uranus
    anders lexell tenta lui de calculer l orbite en appliquant lemodèle d une planète. À sa grande surprise, cette trajectoire semblait
    http://planete.astronomie.free.fr/Uranus/Uranus-Rotation-00.htm
    Astronomie sur PLANÈTE ASTRONOMIE
    Planète Astronomie
    Système Solaire
  • Galerie Formation Missions en cours Terre - Soleil
  • Soleil
  • Rotation Structure interne Vidéos
  • Mercure
  • Rotation Structure interne Galerie Vidéos
  • Vénus
  • Rotation Structure interne Vidéos
  • Terre
  • Rotation Structure interne Galerie Lune Rotation Structure interne Galerie Exploration ... Mécanique céleste
  • Mars
  • Rotation Carte géographique Structure interne Galerie ... Satellites Phobos Galerie Deimos Galerie
  • Astéroïdes
  • Localisation Structure interne Météorites Vidéos
  • Jupiter
  • Rotation Structure interne Galerie Satellites Io Rotation Structure interne Galerie Vidéos Europe Rotation Structure interne Galerie Ganymède Rotation Structure interne Galerie Callisto Rotation Structure interne Galerie
  • Saturne
  • Rotation Structure interne Galerie Vidéos ... Satellites Janus Rotation Mimas Rotation Galerie Vidéo Encelade Rotation Galerie Vidéos Téthys Rotation Galerie Dioné Rotation Galerie Rhéa Rotation Galerie Titan Rotation Galerie Hypérion Rotation Vidéo Japet Galerie Phoebé Galerie
  • Uranus
  • Rotation Structure interne Galerie Vidéos ... Satellites Miranda Rotation Galerie Ariel
  • 76. À§´ëÇѼöÇÐÀÚ ¸ñ·Ï
    lexell, anders Johan lexell Born 24 Dec1740 in ?bo, Sweden (now Turku, Finland) Died 11 Dec 1784 in St Petersburg,
    http://www.mathnet.or.kr/API/?MIval=people_seek_great&init=L

    77. Charles Messier (26 Giugno 1730 - 12 Aprile 1817)
    lexell, il cui nome viene dato peraltro nonallo scopritore, Charles Messier ma ad anders lexell, un astronomo e
    http://www.mclink.it/mclink/astro/messier/xtra/history/biograph.html
    Charles Messier (26 giugno 1730 - 12 aprile 1817)
    • Consultate la nostra cronologia della vita di Messier
    • Scrivete qualsiasi commento, correzione o aggiunta. Saranno particolarmente gradite informazioni sulla vita privata di Messier, qui assai incompleta.
    Nel 1751 parte per Parigi dove arriva in ottobre. grazie alla sua bella calligrafia trova impiego presso per l'astronomo della Marina Joseph Nicolas Delisle Nel 1757, Charles Messier inizia l'osservazione della cometa di Halley. Il primo rapporto scritto della sua osservazione di cometa di Halley (scoperta in precedenza da Maraldi), e la segna sulla carta del percorso della cometa di Halley. Nel 1761 osserva il transito di Venere e gli anelli di Saturno. Il 28 settembre 1763, scopre la cometqa 1763 (Messier), ed il 3 gennaio 1764 la seguente cometa 1764 Messier (secondo Don Machholz di terza magnitudine al momento della scoperta). La speranza di entrare nell' Academie Royale des Science francese nel 1763 non trova seguito, con grande disappunto di Charles Messier. Con la scoperta di un'altra "nebula", il suo terzo oggetto del catalogo (l'ammasso globulare

    78. AldeaEducativa.com | Contenidos Y Consultas Educativas
    Translate this page Royale des Science y en la misma época descubrió el cometa lexell que llevael nombre del astrónomo que describió su trayectoria, anders lexell.
    http://www.aldeaeducativa.com/aldea/Biograf2.asp?Which1=250

    79. Sciences Et Technologies
    anders Johan lexell, mathématicien et astronome, quia non seulement découvert Uranus mais a étendu les découvertes faites
    http://www.france.fi/ccf/sciences/fra/
    Bulletin scientifique de Finlande 2005
    e
    Madame Marie Aronson
    marie.aronson@france.fi

    Madame Kristina Haataja
    kristina.haataja@france.fi

    80. Poutanen
    anders Johann lexell matematiikan professori Pietarista laski ensimmäistenjoukossa uuden kappaleen radan ja ilmoitti, että kyseessä on planeetta.
    http://www.tsv.fi/ttapaht/992/poutanen.htm
    Alkuun Markku Poutanen
    Taivaan kellokoneisto
    Kellokoneisto pelastetaan

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

    free hit counter