Geometry.Net - the online learning center
Home  - Scientists - Lebesgue Henri
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Lebesgue Henri:     more books (37)
  1. Measure and the integral (The Mathesis series) by Henri Leon Lebesgue, 1966
  2. Leçons sur l'intégration et la recherche des fonctions primitives, professées au Collège de France (French Edition) by Henri Léon Lebesgue, 2010-05-14
  3. Lecons sur l'integration et la recherche des fonctions primitives (Ams Chelsea Publishing) (French Edition) by Henri Lebesgue, 2003-08-12
  4. Leçons Sur Les Séries Trigonométriques (French Edition) by Henri Léon Lebesgue, 2010-03-16
  5. Leçons Sur L'intégration Et La Recherche Des Fonctions Primitives (French Edition) by Henri Léon Lebesgue, 2010-04-08
  6. Lecons sur les series trigonometriques: Professees au College de France (French Edition) by Henri Leon Lebesgue, 1975
  7. Lecons Sur L'Integration Et La Recherche Des Fonctions Primitives by Henri Lebesgue, 2003-06-19
  8. Leçons Sur Les Séries Trigonométriques Professées Au Collège De France (French Edition) by Henri Léon Lebesgue, 2010-03-10
  9. Leçons Sur Les Fonctions De Variables Réelles Et Les Développements En Séries De Polynomes: Professées À L'École Normale Supérieure (French Edition) by Paul Painlevé, Henri Lebesgue, et all 2010-01-10
  10. Leçons Sur Les Fonctions De Variables Réelles Et Les Développements En Séries De Polynomes, Professées À L'école Normale Supérieure. Rédigées Par Maurice ... Painlevé Et Henri Lebesgue (French Edition) by Borel Emile 1871-1956, Fréchet Maurice 1878-, 2010-09-28
  11. Henri Léon Lebesgue: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2000
  12. Lecons sur les fonctions de variables reelles et les developpements en series de polynomes...redigees par Maurice Frechet. Avec des notes par Paul Painleve et Henri Lebesgue. Deuxieme edition, revue et corrigee avec le concours de M. A. Roussel by Emile Borel, 1928
  13. Biography - Lebesgue, Henri (Leon) (1875-1941): An article from: Contemporary Authors by Gale Reference Team, 2003-01-01
  14. Message dun mathématicien: Henri Lebesgue, pour le centenaire de sa naissance. Introductions et extraits choisis par Lucienne Félix by Lucienne, ed. Félix, 1974-01-01

61. Henri Léon Lebesgue bookmarks
http//www.sciences-en-ligne.com/momo/chronomath/chrono1/lebesgue.html
http://perso.wanadoo.fr/jean-paul.davalan/liens/liens_lebesgue.html

Accueil

Plan du site

Bloc notes

Jeux
...
Home

dans la marge
University
Surf .net
Votre portail e-Learning
On-Line Encyclopedia

of Integer Sequences
MaMuX Le Droit de comprendre
SOMMAIRE
Historiques
HISTORIQUES - HISTORY
Stieltjes Thomas Jan hollandais, 1856-1894 Riemann Bernhard allemand, 1826-1866 School of Mathematics and Statistics University of St Andrews, Scotland ... Historiques Advertising : If you see a reference in one of the files that is not linked, and you know of a link address to the appropriate document, please send me mail, and I will include the link in the document. Thanks very much in advance. Avertissement : Jean-Paul Davalan Accueil Plan du site Bloc notes ... Divers Search:

62. PlanetMath: Lebesgue Measure
lebesgue measure was introduced by henri lebesgue in the first decade of twentiethcentury. It became the prototypical example of what later became known
http://planetmath.org/encyclopedia/LebesgueMeasure.html
(more info) Math for the people, by the people. Encyclopedia Requests Forums Docs ... Random Login create new user name: pass: forget your password? Main Menu sections Encyclop¦dia
Papers

Books

Expositions

meta Requests
Orphanage

Unclass'd

Unproven
...
Classification

talkback Polls
Forums
Feedback Bug Reports downloads Snapshots PM Book information News Docs Wiki ChangeLog ... About Lebesgue measure (Definition) Let , and let be the complement of with respect to . A set is said to be measurable if, for any where is the Lebesgue outer measure of . If is measurable, then we define the Lebesgue measure of to be . The measurables sets include open sets closed sets as well all the sets obtained from them by taking countable unions and intersections Lebesgue measure on is the -fold product measure of Lebesgue measure on Lebesgue measure was introduced by Henri Lebesgue in the first decade of twentieth century. It became the prototypical example of what later became known simply as measure , a concept which unified such diverse objects as area, probability, and function "Lebesgue measure" is owned by bbukh full author list owner history view preamble View style: HTML with images page images TeX source See Also: measure Lebesgue outer measure Lebesgue integral Minkowski inequality ... Borel -algebra Keywords: real analysis Pronunciation guide Lebesgue: /l*- beg' Cross-references: function measure product measure intersections ... complement There are 21 references to this object.

63. Article About "Henri Lebesgue" In The English Wikipedia On 24-Apr-2004
The henri lebesgue reference article from the English Wikipedia on henri L?lebesgue (28 juin 1875 Rennes 26 juillet 1941 Paris) (in French)
http://fixedreference.org/en/20040424/wikipedia/Henri_Lebesgue
The Henri Lebesgue reference article from the English Wikipedia on 24-Apr-2004 (provided by Fixed Reference : snapshots of Wikipedia from wikipedia.org)
Henri Lebesgue
) was a French mathematician , most famous for his theory of integration . Lebesgue's integration theory was originally published in his dissertation, Intégrale, longueur, aire ("Integral, length, area"), at the University of Nancy in Lebesgue's father was a typesetter, who died of tuberculosis when his son was still very young, and Lebesgue himself suffered from poor health throughout his life. After the death of his father, his mother worked tirelessly to support him. He was a brilliant student in primary school, and he later studied at the Ecole Normale Supérieure Lebesgue married the sister of one of his fellow students, and he and his wife had two children, Suzanne and Jacques. He worked on his dissertation while teaching in Nancy at a preparatory school.
Lebesgue's theory of integration
This is a non-technical treatment from a historical point of view; see the article Lebesgue integration for a technical treatment from a mathematical point of view.

64. Historia Matematica Mailing List Archive: Re: [HM] Presque Part
11 henri lebesgue, Sur la recherche des fonctions primitives 18 henrilebesgue, Encore une observation sur les fonctions
http://sunsite.utk.edu/math_archives/.http/hypermail/historia/jul00/0142.html
Re: [HM] Presque partout
Subject: Re: [HM] Presque partout
From: Dave L. Renfro ( dlrenfro@gateway.net
Date: Wed Jul 26 2000 - 19:49:56 EDT In the thread "[HM] Presque partout" at
http://forum.swarthmore.edu/epigone/historia_matematica/tinraxlox

Udai Venedem wrote (in part) on June 3, 2000:
> on page 179 pretend that the locution "presque partout"
> (to mean "except on a zero-measured set") was introduced in
On June 25, 2000 [I had been out of town the previous 5 weeks.]
and in this same thread I responded (in part) with:
> At the top of page 138 of [3] Hawkins writes: "The phrase 'almost
> points except those forming a set of measure zero." At this place > In the middle of page 114 of [5] Medvedev writes: "The term 'almost > everywhere' can be found in a 1909 paper of Lebesgue [14, p. 43]." > [4] Henri Lebesgue, "Sur les integrales singulieres", Ann. Fac.

65. Historia Matematica Mailing List Archive: Re: [HM] Presque Part
8 henri lebesgue, Sur une generalisation de l integrale definie, CR Acad. Sci . 11 henri lebesgue, Sur la recherche des fonctions primitives par
http://sunsite.utk.edu/math_archives/.http/hypermail/historia/jun00/0184.html
Re: [HM] Presque partout
Subject: Re: [HM] Presque partout
From: Dave L. Renfro ( dlrenfro@gateway.net
Date: Mon Jun 26 2000 - 03:56:57 EDT venedem@wanadoo.fr
[Historia-Matematica Sun, 25 Jun 2000 22:08:27 +0200]
http://forum.swarthmore.edu/epigone/historia_matematica/tinraxlox

wrote (in part, including a quote from my previous post):
See reference [11] below. However, assuming Hawkins is correct
when he wrote that the phrase 'presque partout' does not appear in
[11], nothing in [11] would help in determining date of first
appearance of the phrase 'presque partout'. This is why I didn't
bother to give reference [11] in my previous post. De la Vallee-Poussin wrote a very influential paper, [7], which might give some information as to when Lebesgue introduced the term 'presque partout'. Unfortunately, I only have a copy of one

66. Math Forum Discussions
henri lebesgue published in 1937 the following paper lebesgue, henri Sur uneconstruction du polygone regulier de 17 cotes, due a AndreMarie Ampere,
http://mathforum.org/kb/message.jspa?messageID=1078425&tstart=0

67. Math Forum: Ask Dr. Math FAQ: Regular Polygon Formulas
John, I discovered another nice construction by henri lebesgue. Let me tell thestory henri lebesgue published in 1937 the following paper lebesgue,
http://mathforum.org/dr.math/faq/formulas/faq.regpoly.html
Ask Dr. Math: FAQ
R egular P olygon F ormulas
Geometric Formulas: Contents
Ask Dr. Math Dr. Math FAQ Search Dr. Math
also see Defining Geometric Figures Regular Polygon
Number of sides, all equal length a: n
Number of interior angles, all equal measure beta: n
Central angle subtending one side: alpha
Perimeter: P
Area: K
Radius of circumscribed circle: R
Radius of inscribed circle: r
beta = Pi(n-2)/n radians = 180 o (n-2)/n alpha = 2 Pi/n radians = 360 o /n alpha + beta = Pi radians = 180 o P = na = 2nR sin(alpha/2) K = na cot(alpha/2)/4 = nR sin(alpha)/2 = nr tan(alpha/2) = na sqrt(4R -a R = a csc(alpha/2)/2 r = a cot(alpha/2)/2 a = 2r tan(alpha/2) = 2R sin(alpha/2) To read about regular polygons, visit The Geometry Center. Special Cases of the Regular Polygon
n = 3 (equilateral triangle)
n = 4 (square)
n = 5 (regular pentagon)
n = 6 (regular hexagon)
n = 8 (regular octagon)
    The Regular Pentagon (For constructions using straightedge and compass, see examples below by Floor van Lamoen and John Conway
      Number of sides n = 5 Internal angles beta = 3 /5 radians = 108 degrees Central angles alpha = 2 /5 radians = 72 degrees Perimeter P = 5a = 5R sqrt(10-2 sqrt[5])/2 Area K = 5a sqrt(1+2/sqrt[5])/4 sqrt(10+2 sqrt[5])/8 sqrt(5-2 sqrt[5]) = 5a sqrt(4R -a Circumradius R = a sqrt(2+2/sqrt[5])/2 Apothem r = a sqrt(1+2/sqrt[5])/2 = R(1+sqrt[5])/4 Side a = 2r sqrt(5-2 sqrt[5]) = R sqrt(10-2 sqrt[5])/2
    The Regular Hexagon
      Number of sides n = 6

68. L Index
lebesgue integral,; lebesgue integration,; lebesgue measurable,; lebesgue measure,;lebesgue outer measure,; lebesgue s theorem,; lebesgue, henriLéon
http://www.mathresources.com/products/mathresource/demo/indices/index_l.htm
L Vocabulary Index
  • L
  • L series,
  • label,
  • labelled tree,
  • lacunary series,
  • lacunary value,
  • Lagrange form of the remainder,
  • Lagrange interpolation formula,
  • Lagrange method of multipliers,
  • Lagrange multipliers,
  • Lagrange problem,
  • Lagrange's equations,
  • Lagrange's identity,
  • Lagrange's linear equation,
  • Lagrange's theorem,
  • Lagrange, Joseph Louis, Comte de
  • Lagrangian,
  • Lagrangian description,
  • lambda
  • lambda abstraction,
  • lambda calculus,
  • lambda conversion,
  • Lambert series,
  • lamina,
  • language,
  • Laplace equation,
  • Laplace transform,
  • Laplace, Pierre Simon, Marquis de
  • Laplacian
  • large,
  • latent root,
  • latent vector,
  • lateral face,
  • Latin square,
  • lattice,
  • latus rectum,
  • Laurent expansion
  • law,
  • law of averages,
  • law of large numbers,
  • laws of motion,
  • lawyer paradox,
  • lcd,
  • lcm,
  • leading coefficient,
  • leading diagonal,
  • least,
  • least common denominator
  • least common multiple
  • least integer function,
  • least residue,
  • least squares,
  • least squares theorem,
  • least upper bound
  • Lebesgue covering,
  • Lebesgue decomposition of a measure,
  • Lebesgue integral,
  • Lebesgue integration
  • 69. Lebesgue: Exposé Géométrique D'un Mémoire De Cayley Sur Les Polygones De Pon
    lebesgue, henri Exposé géométrique d un mémoire de Cayley sur les polygones dePoncelet. Annales de la faculté des sciences de Toulouse Sér. 3, 13 (1921),
    http://www.numdam.org/numdam-bin/item?id=AFST_1921_3_13__61_0

    70. Dunham, W.: The Calculus Gallery: Masterpieces From Newton To Lebesgue.
    beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenthcentury and continuing to henri lebesgue at the dawn of the twentieth.
    http://www.pupress.princeton.edu/titles/7905.html
    SEARCH:
    Keywords Author Title More Options Power Search
    Search Hints

    E-MAIL NOTICES
    NEW IN PRINT E-BOOKS ... HOME PAGE
    The Calculus Gallery:
    Masterpieces from Newton to Lebesgue
    William Dunham
    Shopping Cart
    Endorsements
    Chapter 1 [in PDF format]
    More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway into higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. William Dunham lucidly presents the definitions, theorems, and proofs. "Students of literature read Shakespeare; students of music listen to Bach," he writes. But this tradition of studying the major works of the "masters" is, if not wholly absent, certainly uncommon in mathematics. This book seeks to redress that situation. Like a great museum, The Calculus Gallery is filled with masterpieces, among which are Bernoulli's early attack upon the harmonic series (1689), Euler's brilliant approximation of pi (1779), Cauchy's classic proof of the fundamental theorem of calculus (1823), Weierstrass's mind-boggling counterexample (1872), and Baire's original "category theorem" (1899). Collectively, these selections document the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinchinga story of genius triumphing over some of the toughest, most subtle problems imaginable.

    71. Enciclopedia :: 100cia.com
    Translate this page henri Leon lebesgue. henri Léon lebesgue (28 de junio de 1875 - 26 de julio de Al año siguiente definió la integral de lebesgue, la cual generaliza la
    http://100cia.com/enciclopedia/Henri_Leon_Lebesgue
    Portada Artículos favoritos
    Vea sus documentos y artículos favoritos pulsando aquí No hay artículos favoritos todavía. documentos sin leer:
    Siguiente doc sin leer
    Borrar los docs leídos Borrar todos los docs
    ¡Webmaster!
    ¿Quieres tener los contenidos de 100cia.com en tu página? Pulsa aquí
    Buscar: en Google en noticias en Enciclopedia Estás en: 100cia.com > Enciclopedia Henri Leon Lebesgue Henri Léon Lebesgue 28 de junio de 26 de julio de matemático francés Nació en Beauvais Oise Picardie Francia . Estudió en la Ecole Normale Supérieure y en el período impartió clases en el Liceo de Nancy Con base en el trabajo de otros matemáticos, entre ellos Emile Borel y Camille Jordan , Lebesgue formuló la teoría de la medida en . Al año siguiente definió la integral de Lebesgue , la cual generaliza la noción de la integral de Riemann al extender el concepto de área bajo una curva para incluir funciones discontinuas . Este es uno de los logros del análisis moderno que expande el alcance del análisis de Fourier . Lebesgue dio a conocer este desarrollo en su disertación Intégrale, longueur, aire presentada en la Universidad de Nancy en
    Además de aproximadamente 50 artículos, escribió dos libros:

    72. Mathematical Quotations -- L
    lebesgue, henri (1875 1941). In my opinion, a mathematician, in so far as heis a mathematician, need not preoccupy himself with philosophy an opinion,
    http://math.furman.edu/~mwoodard/ascquotl.html
    Mathematical Quotations L
    Back to MQS Home Page Back to "K" Quotations Forward to "M" Quotations
    La Touche, Mrs.
    I do hate sums. There is no greater mistake than to call arithmetic an exact science. There are permutations and aberrations discernible to minds entirely noble like mine; subtle variations which ordinary accountants fail to discover; hidden laws of number which it requires a mind like mine to perceive. For instance, if you add a sum from the bottom up, and then from the top down, the result is always different.
    Mathematical Gazette , v. 12.
    LaGrange, Joseph-Louis
    The reader will find no figures in this work. The methods which I set forth do not require either constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of procedure.
    Preface to [said about the chemist Lavoisier:]
    It took the mob only a moment to remove his head; a century will not suffice to reproduce it.
    H. Eves An Introduction to the History of Mathematics, 5th Ed. , Saunders.

    73. OEUVRES
    Translate this page lebesgue, henri, Oeuvres scientifiques en cinq volumes, Vol. I. lebesgue, henri,Oeuvres scientifiques en cinq volumes, Vol. II
    http://www.iecn.u-nancy.fr/~eguether/bibliotheque/MotCle/node9.html
    suivant: PHILOSOPHIE monter: MotCle HISTOIRE
    OEUVRES
    Abel, Niels Henrik Abel, Niels Henrik Adams, J. Frank The selected works of J. Frank Adams Vol. 1 (1991) Adams, J. Frank The selected works of J. Frank Adams Vol. 2 (1991) Artin, Emil The collected papers of Emil Artin (1965) Atiyah, Michael Collected works Vol. 1 (1988) Atiyah, Michael Collected works Vol. 2 (1988) Atiyah, Michael Collected works Vol. 3 (1988) Atiyah, Michael Collected works Vol. 4 (1988) Atiyah, Michael Collected works Vol. 5 (1988) Atiyah, Michael Collected works Vol. 6 (2004) Badrikian, Albert Oeuvres scientifiques (1990) Banach, Stefan Oeuvres Vol. 2 (1979) Bellman, Richard E. The Bellman continuum (1986) Bernoulli, Jakob Die Werke von Jakob Bernoulli Vol. 1 (1969) Bishop, Errett Selected papers (1986) Bochner, Salomon Selected mathematical papers of Salomon Bochner (1969) Bolzano, Bernard Bernard Bolzano's Schriften Vol. 1 (1930) Borel, Armand Oeuvres Vol. 1 (1983) Borel, Armand Oeuvres Vol. 2 (1983) Borel, Armand Oeuvres Vol. 3 (1983) Borel, Armand Oeuvres Vol. 4 (2001)

    74. Journée Henri Lebesgue - Rennes
    henri lebesgue fut maître de conférences à l université de Rennes de 1902 à
    http://colloques-irmar.univ-rennes1.fr/site_lebesgue/
    Mardi 21 Septembre 2004
  • Pour en savoir plus.
  • IRMAR Inscription
    avant le 6 septembre 2004 Programme Liste participants
    D. Bennequin (Jussieu),
    C. Dellacherie (Rouen),
    H. Gispert (Orsay),
    J.-P. Kahane (Orsay),
    J. Pennec (Rennes),
    Y. Meyer (ENS Cachan).
    Programme de la rencontre
    J. Pennec J.-P. Kahane H. Gispert Relations scientifiques et personnelles entre Lebesgue et Borel,
    Y. Meyer Analyse, C. Dellacherie D. Bennequin Le miroir de Lebesgue
    • Trains :
        lundi 20 septembre soir mardi 21 septembre matin mardi 21 septembre soir autres : Site web de la SNCF Site Web A Rennes : Pour aller de la gare au Campus de Beaulieu:
          prendre le bus n. 16 et descendre à l'arrêt "Beaulieu Tournebride" gagner l'entrée principale du campus, l'amphithéâtre (Louis Antoine - Bât 2A) se situe derrière le bâtiment administratif. pour rejoindre l'IRMAR, prendre, devant la grande poste, le bus n. 16 plan du Campus de Beaulieu , qui abrite l'IRMAR. Rennes et du Campus de Beaulieu
        Le Garden - 3 rue Duhamel - 35000 Rennes Organisation : R. Carles
  • 75. Informations Sur Henri Lebesgue
    lebesgue. Quelques motssur l intégrale de lebesgue . Comprendre la notion de l intégrale de
    http://colloques-irmar.univ-rennes1.fr/site_lebesgue/pesp.html
    Henri Lebesgue

    100 ans

    76. Encyclopedia: Lebesgue Integration
    henri Léon lebesgue (June 28, 1875 – July 26, 1941) was a French mathematician,most famous for his theory of integration. 1875 was a common year
    http://www.nationmaster.com/encyclopedia/Lebesgue-integration

    Supporter Benefits
    Signup Login Sources ... Pies
    Related Articles People who viewed "Lebesgue integration" also viewed:
  • Lebesgue integral
  • Lebesgue_Stieltjes integration
  • Lebesgue measure
  • Henri Lebesgue ...
  • Lp space What's new?
  • Our next offering Latest newsletter Student area Lesson plans
  • Recent Updates
  • Bart Simpson Barbara Juliana, Baroness von Kr¼dener Bangalore Balloon light ...
  • More Recent Articles Top Graphs
  • Richest Most Murderous Most Taxed Most Populous ...
  • More Stats
    Encyclopedia: Lebesgue integration
    Updated 10 days 45 minutes ago. Other descriptions of Lebesgue integration In the mathematical branch of analysis Lebesgue integration is a means of extending the usual notion of An analysis is a critical evaluation, usually made by breaking a subject (either material or intellectual) down into its constituent parts, then describing the parts and their relationship to the whole. ... (Riemann-) integration to more functions and to more general settings. The main advantage of the Lebesgue integral over the Riemann integral is that more functions become integrable, and that the integral can often be determined easily using convenient convergence theorems. Furthermore, the extension of the notion of integration to functions defined on general measure spaces, which include probability spaces, allows the proper formulation of the foundations of probability and statistics . A formal introduction of the concept follows. In calculus, the integral of a function is a generalization of area, mass, volume, sum, and total. ...

    77. Henri Louis Bergson - Definition Of Henri Louis Bergson By The Free Online Dicti
    What does henri Louis Bergson mean? henri Louis Bergson synonyms, henri LouisBergson antonyms. henri Léon Emile Lavedan henri Leon lebesgue
    http://www.thefreedictionary.com/Henri Louis Bergson
    Domain='thefreedictionary.com' word='Henri Louis Bergson' Your help is needed: American Red Cross The Salvation Army join mailing list webmaster tools Word (phrase): Word Starts with Ends with Definition subscription: Dictionary/
    thesaurus Computing
    dictionary Medical
    dictionary Legal
    dictionary Financial
    dictionary Acronyms
    Columbia
    encyclopedia Wikipedia
    encyclopedia
    Hutchinson
    encyclopedia
    Henri Louis Bergson
    Also found in: Wikipedia Hutchinson 0.01 sec. Page tools Printer friendly
    Cite / link Email Feedback Thesaurus Legend: Synonyms Related Words Antonyms Noun Henri Louis Bergson - French philosopher who proposed elan vital as the cause of evolution and development (1859-1941) Bergson Henri Bergson philosopher - a specialist in philosophy Mentioned in References in classic literature No references found No references found Dictionary/thesaurus browser Full browser henpecked Henri Henri Becquerel Henri Bergson ... Henri Labrouste Henri Louis Bergson Henri Matisse Henri Rene Albert Guy de Maupassant Henri Rousseau Henri Toulouse-Lautrec ... Henri Leon Lebesgue Henri Louis Bergson Henri Louis le Chatelier Henri Louveau Henri Maillardet Henri Marc Brunel ... Henri Nestle Word (phrase): Word Starts with Ends with Definition Free Tools: For surfers: Browser extension Word of the Day NEW!

    78. Oeuvres De Henri Lebesgue (numérisation BNF)
    henri Léon lebesgue 28 juin 1875 (Beauvais) - 26juillet 1941 (Paris). Numérisation gallica (Bibliothèque Nationale de France
    http://www-mathdoc.ujf-grenoble.fr/Projet_NUMDAM/lebesgue.html
    LEBESGUE
    Henri Léon Lebesgue

    28 juin 1875 (Beauvais) - 26 juillet 1941 (Paris)
    Numérisation gallica Bibliothèque Nationale de France

    79. Bibliographie Nationale Française Livres - Cumulatif 2004 - 510. Mathématiques
    lettres à Émile Borel / henri lebesgue ; éd. par Bernard Bru et Pierre Dugac
    http://bibliographienationale.bnf.fr/Livres/CuM_04.H/cadre510-5.html
    recherche Accueil Livres Musique Livres Cadre de classement Index
    Cumulatif 2004
    (page 5/7)
    indice suivant page suivante Lambert , Thierry (1965-....)
    DLE-20040927-43753. - ISBN 2-7178-4852-5 (br.) : 15 EUR.
    BN 39244474
    Larroche
    , Alain (1957-....)
    BN 39240562
    Larroche
    , Alain (1957-....)
    Index. - DLE-20040108-744. (Br.) : 6 EUR.
    BN 39112429
    Laurent
    , Denise (1946-....)
    Les compacts Foucher
    DLE-20040607-26962. - ISBN 2-216-09523-0 (br.) : 14,50 EUR. BN 39189157 Lauria , Philippe Cantor et le transfini Ouverture philosophique Bibliogr. p. 245-248. - DLE-20040316-12137. - 511.322 (21) . - ISBN 2-7475-5848-7 (br.) : 23 EUR. Nombres transfinis BN 39144085 Laville , Guy Courbes et surfaces Index. - DLE-20040525-24516. - 516.36 (21) . - ISBN 2-7298-1856-1 (br.) : 18,50 EUR. BN 39182645 Lay , David C. Titre original : Linear algebra and its applications. - DLE-20040525-24200. - 512.507 6 (21) . - ISBN 2-8041-4408-9 (br.) : 69,50 EUR. BN 39181940 Le Bris , Claude BN 39130626 Lebesgue , Henri (1875-1941) Bibliogr. p. 225-239. Index. - DLE-20040817-38615. - 510.92 (21) . - ISBN 2-7117-5309-3 (br.) : 29 EUR. Lebesgue, Henri (1875-1941) Correspondance

    80. Lebesgue
    Translate this page henri Léon lebesgue né à Beauvais le 28 juin 1875, Comme son travail étaitune généralisation éclatante, lebesgue lui-même appréhendait de nouvelles
    http://www.bib.ulb.ac.be/coursmath/bio/lebesgue.htm
    Henri Léon Lebesgue
    né à Beauvais le 28 juin 1875,
    décédé à Paris le 26 juin 1941. Lebesgue révolutionna le calcul intégral en généralisant celui de Riemann . Jusqu'à la fin du 19e siècle; l'analyse mathématique était limitée aux fonctions continues, et largement basée sur l'intégrale de Riemann Se fondant sur les travaux d'autres mathématiciens, et en particulier ceux d'Emile Borel et de Camille Jordan, Lebesgue formula sa théorie de la mesure en 1901 et donna l'année suivante la définition de l'intégrale de Lebesgue qui généralise celle de Riemann en étendant le concept d'aire située sous une courbe, afin d'inclure de nombreuses fonctions discontinues. C'est un développement majeur de l'analyse moderne qui étend largement l'analyse de Fourier. Cette découverte remarquable est publiée dans la thèse de Lebesgue présentée à l'université de Nancy en 1902. Outre une cinquantaine d'articles, il écrivit deux ouvrages fondamentaux Leçons sur l'intégration et la recherche des fonctions primitives (1904) et Leçons sur les séries trigonométriques (1906). Il apporta aussi des contributions dans d'autres domaines des mathématiques, en topologie, en théorie du potentiel et en analyse de Fourier. En 1905 il analysa les diverses conditions que Lipschitz et Jordan avaient utilisées pour s'assurer que

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

    free hit counter