Geometry.Net - the online learning center
Home  - Scientists - Kutta Martin
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 90    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Kutta Martin:     more detail

41. CAAM 453 - Rice University - Fall 2005
Biography of martin kutta. Lecture 27, Introduction to numerical ODE solvers;Euler s method. Lecture 26, Gaussian quadrature GH Golub and JH Welsh,
http://www.caam.rice.edu/~caam453/notes.html
CAAM 453 · NUMERICAL ANALYSIS I
Fall 2005 · Rice University
MAIN PAGE PROBLEM SETS EXAMS
References, Software, and Supplementary Material
Lecture 6: Gram-Schmidt orthogonalization; solving linear systems with QR
- Read Trefethen and Bau, Lecture 8
cgs_qr.m

mgs_qr.m

Lecture 5: QR Decomposition, continued
MATLAB demo
: reshape; indexing to extract submatrices
slow_householder_qr.m

householder_qr.m

Lecture 4: QR Decomposition
- MATLAB demo: normest
- Read Trefethen and Bau, Lecture 10 Householder's landmark paper on the QR factorization J. ACM Lecture 3: Projectors and reflectors MATLAB demo : pesky matrix creation errors - Read Trefethen and Bau, Lectures 6, 10 (first half) Biography of Alston S. Householder Lecture 2: Review of linear algebra; norms - Read Trefethen and Bau, Lectures 2, 3 Gilbert Strang, "The Fundamental Theorem of Linear Algebra", American Math. Monthly - MATLAB demo: norm_demo.m Lecture 1: Introduction to Numerical Analysis - Read Trefethen's Definition of Numerical Analysis - Consider subscribing to the NA Digest free weekly electronic newsletter - MATLAB demos: orbit.m

42. Enciclopedia :: 100cia.com
Translate this page martin Wilhelm kutta. (En este momento no hay texto en esta p¡gina. Para iniciarel art­culo, click editar esta p¡gina (http//es.wikipedia.
http://100cia.com/enciclopedia/Martin_Wilhelm_Kutta
Portada Artículos favoritos
Vea sus documentos y artículos favoritos pulsando aquí No hay artículos favoritos todavía. documentos sin leer:
Siguiente doc sin leer
Borrar los docs leídos Borrar todos los docs
¡Webmaster!
¿Quieres tener los contenidos de 100cia.com en tu página? Pulsa aquí Buscar: en Google en noticias en Enciclopedia Estás en: 100cia.com > Enciclopedia Martin Wilhelm Kutta (En este momento no hay texto en esta p¡gina. Para iniciar el art­culo, click editar esta p¡gina http://es.wikipedia.orgMartin_Wilhelm_Kutta Información de Wikipedia (Licencia de uso GFDL) e Internet
¿Sabías que Anónimo dijo...?
Los fallos de los cocineros se tapan con las salsas, los de los arquitectos con flores y los del médico, con tierra. Acerca de
Sync.es

Webs amigas: AstroRED CanalGame AweZoom

43. Wilhelm Konrad Rontgen - Definition Of Wilhelm Konrad Rontgen By The Free Online
Wilhelm Kress Wilhelm Krug Wilhelm kutta Wilhelm Leber Wilhelm Lehmbruck Wilhelm martin kutta Wilhelm martin Leberecht de Wette Wilhelm Marx
http://www.thefreedictionary.com/Wilhelm Konrad Rontgen
Domain='thefreedictionary.com' word='Wilhelm Konrad Rontgen' Your help is needed: American Red Cross The Salvation Army join mailing list webmaster tools Word (phrase): Word Starts with Ends with Definition subscription: Dictionary/
thesaurus Computing
dictionary Medical
dictionary
Legal
dictionary Financial
dictionary Acronyms
Columbia
encyclopedia Wikipedia
encyclopedia Hutchinson
encyclopedia
Wilhelm Konrad Rontgen
Also found in: Medical Hutchinson 0.03 sec. Page tools Printer friendly
Cite / link Email Feedback Thesaurus Legend: Synonyms Related Words Antonyms Noun Wilhelm Konrad Rontgen - German physicist who discovered x-rays and developed roentgenography (1845-1923) Rontgen Wilhelm Konrad Roentgen Roentgen physicist - a scientist trained in physics Mentioned in References in classic literature No references found No references found Dictionary/thesaurus browser Full browser Wilhelm Wilhelm Apollinaris de Kostrowitzki Wilhelm Eduard Weber Wilhelm Grimm ... Wilhelm Konrad Roentgen Wilhelm Konrad Rontgen Wilhelm Ostwald Wilhelm Reich Wilhelm Richard Wagner Wilhelm von Opel ... Wilhelm Karl, Ritter von Haidinger

44. List Of Mathematical Topics (J-L) - Definition Of List Of Mathematical Topics (J
Ernst Kummer, Ernst Eduard Kummer theory Kuratowski, Kazimierz Kuratowski closure axioms Kurtosis kutta, martin Wilhelm
http://encyclopedia.laborlawtalk.com/List_of_mathematical_topics_(J-L)
Add to Favorites
General
Encyclopedia Legal ... Law forum Search Word: Visit our Law forums

45. Hollis: Differential Equations
kutta, martin Wilhelm L Hôpital, Guillaume de Lagrange, JosephLouis Laplace, Pierre-Simon Legendre, Adrien-Marie Liouville, Joseph
http://www.math.armstrong.edu/faculty/hollis/dewbvp/
Differential Equations
with Boundary Value Problems by Selwyn Hollis
Contents and Preface
Marketing Blurb Book Site @ Prentice Hall ... QuickTime Movies Technology Mathematica Maple Java M ... ATLAB Sundry Items Problem graphics and extra graphical problems for Section 3.1.
Please send bug reports here
Professors: Please send me an email
Some Biographical References
The following are links to information on most of the mathematicians/scientists whose names appear in the book. Unless otherwise noted, each of these is a link to the MacTutor History of Mathematics Archive at the University of St Andrews, Scotland.
Abel, Niels Henrik

Airy, George

Banach, Stefan

Bendixson, Ivar
... Edelstein-Keshet, Leah (U. BC) Euler, Leonhard Fourier, Joseph Frobenius, Georg Gauss, Carl Friedrich ... Hertz, Heinrich Rudolf (Google search) Hodgkin, Alan Nature Hooke, Robert Huxley, Andrew (sfn.org) Jacobi, Carl Jordan, Camille Kirchhoff, Gustav Kutta, Martin Wilhelm ... Lorenz, Edward N. (xrefer.com) Lotka, Alfred (Google search) Lyapunov, Aleksandr Maclaurin, Colin Malthus, Thomas (Google search) Menten, Maud

46. PhD Alumni
Stability and Efficiency Properties of Implicit Rungekutta Methods John C Butcher Gaven martin Norm Levenberg. Greenwood, Sina; PhD 1999
http://www.math.auckland.ac.nz/Directory/phd_alumni.php
University of Auckland
Department of Mathematics
PhD Alumni
This is a (currently incomplete) list of the people who have received PhDs from the Mathematics Department of the University of Auckland. You can check out their whakapapa courtesy of the math genealogy project. Adam , Aishath Shehenaz; PhD 2004
Ethnomathematics in the Maldivian Curriculum: Trialling an Implementation
Aziz
, Mubin Ahmed; PhD 1987
Runge-Kutta Methods for Oscillatory Problems
John C Butcher
Barton
, Bill D; PhD 1996
Ethnomathematics:Exploring Cultural Diversity in Mathematics
Jim Marshall
Ben-Tal
, Alona; PhD 2001
A Study of Symmetric Forced Oscillators Burrage , Kevin; PhD 1978 Stability and Efficiency Properties of Implicit Runge-Kutta Methods John C Butcher Cao , Jiling; PhD 1999 Asymmetric Topology and Topological Spaces Defined by Games Chan , Robert Peng Kong; PhD 1989 Extrapolation of Runge-Kutta Methods for Stiff Initial-value Problems J. C. Butcher and K. Burrage Chan , Tina Ming-Hua; PhD 1998 Algebraic Structures for the Analysis of Numerical Methods J. C. Butcher

47. Research Reports
469 The error growth of some symplectic explicit Rungekutta Nystrom offset models for Radiocarbon calibration , by martin Jones and Geoff Nicholls
http://www.math.auckland.ac.nz/Research/Reports/
University of Auckland
Department of Mathematics
Journals and Reports
Mathematics Journals
Research Reports
The Departmental Report Series was started in 1971. All future reports will be available electronically, mostly as .ps.gz files (compressed PostScript). Paper copies of past reports can be obtained from the department. Some staff maintain their own personal preprint archives . Staff may submit a new report for this series. The series and this homepage is maintained by Olita Moala Search for:
More Options
Papers available

48. Ch3
as developed before World War I by Europeans martin W. kutta (18671914) Prandtl had refined the kutta-Joukowskj method, but his refinement still
http://history.nasa.gov/SP-4305/ch3.htm
SP-4305 ENGINEER IN CHARGE The Variable-Density Wind tunnel ] Langley first built its reputation as an outstanding aeronautical research institution on the strength of the variable-density wind tunnel. Max M. Munk, the NACA's German aerodynamicist, proposed this unique and, in some respects, revolutionary piece of experimental equipment in 1921. Two years later Munk's so-called VDT went into operation at the lab. The test results it yielded were s superior to those obtained with any previous tunnel design, especially retarding wing performance, that they made the NACA a world leader in aerodynamic research for at least the next ten years. Aircraft companies, engineering schools, and even foreign research establishments, such as the National Physical Laboratory of Great Britain, sent crews to Langley to study the VDT and return home with ideas for building improved versions of it. ] increased; to be discussed in chapter 4 ). Was their practical achievement by Langley researchers a reality or a myth? The Development of Wind Tunnel Technology Within the diversity of facilities, the wind tunnel predominated. Francis Wenham built the first known tunnel at Greenwich, England, for the Aeronautical Society of Great Britain in 1871. The tunnel consisted of a steam-driven fan that blew air through a wooden box 12 feet long and 18 inches square, and open at both ends. All succeeding tunnels shared certain features of the Wenham design: a drive system turned a fan that produced a controlled air stream, the effects of which on a scale model mounted in a test section of the tunnel were precisely observed. Balances and other instruments measured the aerodynamic forces acting on the model and the model's reaction to them.

49. Index
Jr., 419; Kraus, Sydney M., 406ill., 409; Kuchemann Coke Bottle, 341; Kuhn,Paul, 419; kutta, martin W., 80; kuttaJoukowski method, 80, 81
http://history.nasa.gov/SP-4305/
SP-4305 ENGINEER IN CHARGE Index Illustrations pp ix-xvii Chapter 11 pp 311-341 Foreword pp xix-xxi Chapter 12 pp 343-383 Acknowledgments pp xxiii-xxv Epilogue pp 385-396 Introduction pp xxvii-xxxviii Appendix A p 397 Chapter 1 pp 1-22 Appendix A1 p 399 Chapter 2 pp 23-63 Appendix B pp 401-425 Chapter 3 pp 65-95 Appendix C pp 427-439 Chapter 4 pp 97-122 Appendix D pp 441-478 Chapter 5 pp 123-139 Appendix E pp 479-509 Chapter 6 pp 141-185 Appendix F pp 511-514 Chapter 7 pp 187-217 Notes pp 515-565 Chapter 8 pp 219-247 Guide To NACA at Langley pp 567-588 Chapter 9 pp 249-270 Index pp 589-620 Chapter 10 pp 271-309 Author p 621
A-9 missile (German), 343
A-10 missile (German), 343
A- 17A (Northrop), 138ill., 489, 491
A-20 Invader (Douglas), 251, 49, 498
Abbot, Charles G., 7ill., 405, 406ill.
Abbott, Ira H., 6ill1., 113, 116, 17, 375, 376, 414, 452, 457, 464, 515, 524, 526, 529, 537, 540, 544, 548, 559, 563
acceleration effects on drop-body testing, 262
accelerometer, 520
Acker, Otto, 550
Adams, Charles F., 160
Adams, Joseph P., 405
Adams, Porter, 519
Adams, William, 43ill.

50. November 2004
martin Wilhelm kutta, 4 Johann(III) Bernoulli, 5 James Glaisher, 6 Giovanni Plana.7 Thomas De Lagny, 8 Edmond Halley, 9 Hermann Weyl, 10
http://mathforum.org/~judyann/calendar/November2004.html
November 2004
Can you identify the pictured Mathematicians? Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Andrzej Mostowski
George Boole
Martin Wilhelm Kutta
Johann(III) Bernoulli
James Glaisher
Giovanni Plana
Thomas De Lagny
Edmond Halley
Hermann Weyl
Elwin Bruno Christoffel John Henry Whitehead Yutaka Taniyama Max Wilhelm Dehn Robert Moore Michel Chasles Eugenio Beltrami Albert Wangerin Nina Karlovna Bari Benoit Mandelbrot Georg Scheffers Giusto Bellavitis John Wallis Duncan Sommerville Norbert Wiener Anatoly Ivanovich Malcev John Wishart Ernest William Brown Sir Henry Savile A quotation for November: Hermann Weyl (1885 - 1955) Logic is the hygiene the mathematician practices to keep his ideas healthy and strong. The American Mathematical Monthly, November, 1992 This calendar is available in a printable PDF format.

51. People Whose Names Are Embedded In Math Subject Classifcation
There are also two martins 03E50 Continuum hypothesis and martin s axiom, Jakob (18671944) kutta, martin (1869-1942) Hausdorff, Felix (1869-1951)
http://www.math.niu.edu/~rusin/known-math/98/MSC.names
Date: Sun, 6 Jun 1999 12:40:49 +0200 From: "Yuri I. Manin" Date: Thu, 28 Mar 2002 12:43:10 -0800 From: "Antreas P. Hatzipolakis" Cc: rusin@math.niu.edu, a_arakelov@yahoo.co.uk To: hyacinthos@yahoogroups.com Subject: Suren Arekelov This list is devoted to Triangle Geometry. However, from time to time, will be allowed discussions on themes of general interest. Especially when the geometric traffic is not too much. (like this day). Some time ago I asked for information (in fact I FWD-ed an e-mail of D. Rusin) about a notable mathematician who disappeared from the math. horizon. The mathematician is the algebraic geometer Suren Arakelov. Andrei Arakelov has kindly sent the following: > > Date: Thu, 28 Mar 2002 11:29:55 +0000 (GMT) > From: Andrei Arakelov > Subject: Suren Arakelov > To: Antreas P. Hatzipolakis Date: Sat, 05 Feb 2005 11:35:53 +0000 Message-ID:

52. Cosmic Chemical Evolution: Project 2 - Hints
(this page=http//www.astro.uu.se/~martin/CCE01/bbns_hints.html) It isperfectly acceptable to steal the routines for Rungekutta integration from
http://www.astro.uu.se/~martin/CCE01/bbns_hints.html
Project 2: BBNS hints and assumptions
(this page=http://www.astro.uu.se/~martin/CCE01/bbns_hints.html)
Assumptions and simplifications
  • Start calculations of BBNS at t=1 second assuming that weak interaction decoupling and e+-e- annihilation have already occurred. Stop calculations at t=500 seconds. Assume that the temperature evolution as a function of time is given (see http://www.astro.uu.se/~martin/CCE01/bbns_relations.html Assume that the number of photons and nucleons are conserved during BBNS (i.e. that the baryon-to-photon ratio stays constant). Assume that the effective number of degrees of freedom g is given and remains constant (3.36, see http://www.astro.uu.se/~martin/CCE01/bbns_relations.html Only follow the abundances of p, n, H, H, He, He, Li and Be (thus ignoring the production of Li, Be, B and heavier elements due to their extremely small resulting abundances). Only include the most important reactions, see http://www.astro.uu.se/~martin/CCE01/bbns_rates.html Assume initial abundances of N p /N n =6 and with all other abundances very small (setting equal to zero may however lead to problems, in particular when using implicit time-integration).

53. Martin Wilhelm Kutta - Wikipedia
ImageDavid face.png John Lovelady Paolo Ruffini Joan Daemen martin Wilhelm kutta Michael Capellas Samuel Rhoads Yasumasa Kanada Antoine de Laloub¨re
http://de.wikipedia.org/wiki/Martin_Wilhelm_Kutta
Wikimedia braucht Ihre Hilfe Helfen Sie uns, 200.000$ zu sammeln, damit Wikipedia und ihre Schwesterprojekte auch weiterhin kostenlos und werbefrei der Allgemeinheit zur Verf¼gung stehen. Weitere Informationen auf unserer Spenden-Seite
Martin Wilhelm Kutta
aus Wikipedia, der freien Enzyklop¤die
Martin Wilhelm Kutta 3. November in Pitschen Oberschlesien , heute Byczyna Polen 25. Dezember in F¼rstenfeldbruck ) war ein deutscher Mathematiker 1885 bis 1890 studierte er an der Universit¤t Breslau , danach bis 1894 an der Universit¤t M¼nchen . 1894 - 1897 war Kutta Assistent von Walther von Dyck an der Technischen Hochschule M¼nchen . 1898 verbrachte er ein halbes Jahr an der University of Cambridge . 1899 - 1909 war Kutta wiederum Assistent von von Dyck an der Technischen Hochschule M¼nchen. 1909 - 1910 war Kutta auŸerordentlicher Professor an der Universit¤t Jena 1910 - 1912 war Kutta auŸerordentlicher Professor an der RWTH Aachen 1912 wurde Kutta ordentlicher Professor an der Universit¤t Stuttgart und blieb dort bis zu seiner Emeritierung 1935. 1901 hatte er aufbauend auf einen Artikel von Carl Runge das Runge-Kutta-Verfahren zur L¶sung gew¶hnlicher Differentialgleichungen weiterentwickelt.

54. To Hang-gliding Hang-gliding@virginia.edu Subject How Is
martin Withington speaking also on chipmunk powered flight - stated that the basic Re the kutta condition, Kuethe and Chow state A body with a sharp
http://www.amasci.com/wing/straub.txt
To: hang-gliding Subject: how is flight possible From: Davis Straub , Dale Slechta Subject: how is flight possible From: Davis Straub Subject: Bernoulli From: Davis Straub Date: 01 Feb 94 23:25:25 EST Cc: "Raymond H. Kraft" , Martin Withington

55. Two Meters Below Sea Level, What A Shame! Only A Solid Dijk
Wilhelm martin kutta (18671944) brought RK methods 1901 to a first perfectionand became also famous for his later work in aerodynamics (jpeg files
http://www.unige.ch/~wanner/s_c/Amsterdam.html

Two meters below sea level, what a shame! Only a solid dijk prevents these people in Amsterdam from wet feet, and the beautiful pictures of Carl Runge and Wilhelm Kutta would be seriously damaged. Here they are ... Carl David Tolmé Runge (1856-1927) initiated RK methods in 1895, is also famous for his research in complex analysis, spectroscopy, approximation theory, and other fields of applied mathematics. Wilhelm Martin Kutta (1867-1944) brought RK methods 1901 to a first perfection and became also famous for his later work in aerodynamics (jpeg files imported from the WWW pages of Tanja Van Hecke).

56. Martin J. Gander
martin.Gander(at)math.unige.ch Fax +41 22 379 11 76 including Rungekutta,Linear Multistep and adaptive methods, finite elements, finite differences,
http://www.unige.ch/~gander/teaching.php
Martin J. Gander
Section de Mathématiques
2-4 rue du Lièvre, CP 64
CH-1211 Genève
Home
Research Teaching Consulting Seminars Genève:
Analyse numérique

McGill:
CSE

Applied Mathematics

CSE at McGill New degree program in Computational Science and Engineering
:: Teaching Interests My teaching interests are both in Mathematics and Computer Science: in addition to undergraduate courses in both areas, I am interested and qualified to teach at the graduate level Scientific Computing, Numerical Differential Equations, Matrix Computations, Differential Equations, Parallel Computing, Numerical Dynamical Systems, Algorithms and Data Structures and Object Oriented Programing. :: Courses I teach this year in Geneva Analyse numérique des équations aux dérivées partielles: Beaucoup de phénomènes physiques peuvent être modélisés par des équations aux dérivées partielles, par exemple le flux d'un fluide dans un tuyau, les variations de température à l'intérieur d'un appartement ou la cuisson dans un four à micro-ondes. Mais la résolution de ces équations est souvent difficile et les méthodes analytiques suffisent rarement pour obtenir les résultats désirés. Ce cours est une introduction aux méthodes numériques modernes pour la résolution des équations aux dérivées partielles. Nous utiliserons Matlab pour développer des codes modèles simples, et Maple pour nous assister dans les calculs symboliques.

57. The Telegraph - Calcutta : Metro
For MMB director martin Waelde, involved from scratch, Call kutta is an effortto do something outside conventional theatre space.
http://www.telegraphindia.com/1041028/asp/calcutta/story_3929710.asp
Today's Edition Thursday, October 28, 2004 Advertise with us IN TODAY'S PAPER Front Page Nation Calcutta Bengal ... At Leisure WEEKLY FEATURES Knowhow Jobs Careergraph CITY NEWSLINES Choose Region Metro North Bengal Northeast Guwahati Jamshedpur Jharkhand Ranchi FEEDS Our Feeds
RSS

My Yahoo!
ARCHIVES ... Since 1st March, 1999 THE TELEGRAPH About Us Advertise Feedback Contact Us ... Calcutta Call Kutta for twin city theatre tour SUBHRO SAHA Gift of the guide gab: Call centre employees in the city await a new role. Picture by Amit Datta A theatregoer in Berlin opens doors to unknown buildings he would never have dared venture into on his own, gets to know the code with which an inconspicuous sausage-vendor opens a rear room, steps into the strange territory of Gleisdreieck or enters the Hebbeltheater through the rear entrance… All this while being ‘piloted’ by a young and friendly voice stationed more than 10 flight hours away — in Calcutta. Call Kutta, a unique telephone theatre project by a German-Swiss creative group with call centre employees here, seeks to connect Calcutta and Berlin on a very contemporary, inter-cultural plane using a novel medium. The performers in the two-part project would be call centre employees in Calcutta, taking their cell-phone audiences on a remote-controlled guided tour through the bylanes back home, and in Berlin.

58. Numerical Methods Q4 2004/5
martin C. Petersen Click the to get the source code colorcoded. Implements anadaptive step-size Runge-kutta algorithm for solving a first order ODE
http://www.phys.au.dk/~mcp/numerical/
Numerical methods Q4 2004/5
Martin C. Petersen
Click the # to get the source code color-coded.
  • Note 1
    Hello World source output
    Summation source output
    For sufficiently high n the n'th term in the series 1+1/2+...+1/N is zero compared to the sum of the previous n-1 terms within the precision (single or double). However, the tail from n to N (1/n+1/(n+1)+...+1/N) may contribute to the sum and an error is made (within the precision!) by using finite precision in evalutating the sum. This error may be circumvented by summing in order of increasing terms (the sum of the small terms in the tail will get optimal precision). Naturally the error made is larger the lower the precision used (assuming the precision does not describe all terms exactely). Difficulty Usefullness Hello World Summation
    Note 2
    Makefile
    Matrix implementation Matrix.h Matrix.cpp
    Implements a matrix datatype featuring the usual algebraic operations (multiplication and addition/subtraction).
    Read matrices ReadMatrices.cpp
    Reads matrices A and b (vector) according to the parameters passed on the command line.
    Matrix algorithms MatrixAlgorithms.cpp

59. The Journal Of Urology - UserLogin
kutta, A., Schoenfeld, B., martin, W. et al Multifocal renal cell carcinoma ofcollecting duct origin. Scand J Urol Nephrol, 27 531, 1993. Medline Link
http://www.jurology.com/pt/re/juro/fulltext.00005392-200201000-00018.htm
LWWOnline LOGIN eALERTS REGISTER ... Archive You are attempting to access protected content.
To access this content please login using an established account or create/activate an account.
If you have already created/ activated an online account, please login below: User Name: Password: Note: passwords are CASE SENSITIVE
If you are a new user or guest visiting an LWWonline site for the first time, please complete the new account setup process to view or purchase content.

Subscribe to RSS feed utrdc-pt01
Release 4.0

60. Publications Martin Arnold
martinLuther-University Halle, Department of Mathematics and Computer Science . M. Arnold Half-explicit Runge-kutta methods with explicit stages for
http://sim.mathematik.uni-halle.de/~arnold/publications.html
Martin Arnold
Publications
  • A. Heckmann, M. Arnold, O. Vaculín: A modal multifield approach for an extended flexible body description in multibody dynamics . Multibody System Dynamics 13:299-322. - 2005. Abstract M. Arnold, G. Hippmann: Implicit-explicit time integration in multibody dynamics. In Proceedings of IDETC/CIE 2005, ASME 2005 International Design Engineering Technical Conferences, Long Beach, CA, 24-28 September, 2005. Abstract A. Heckmann, M. Arnold: Flexible bodies with thermoelastic properties in multibody dynamics. In J.M. Goicolea, J. Cuadrado, J.C. García Orden, (eds.): Proceedings of Multibody Dynamics 2005 (ECCOMAS Thematic Conference), Madrid, Spain, 21-24 June, 2005. Abstract G. Hippmann, M. Arnold, M. Schittenhelm: Efficient simulation of bush and roller chain drives. In J.M. Goicolea, J. Cuadrado, J.C. García Orden, (eds.): Proceedings of Multibody Dynamics 2005 (ECCOMAS Thematic Conference), Madrid, Spain, 21-24 June, 2005. Abstract Efficient corrector iteration for DAE time integration in multibody dynamics . - Accepted for publication in Comp. Meth. Appl. Mech. Eng., 2005.

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 3     41-60 of 90    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter