Geometry.Net - the online learning center
Home  - Scientists - Kutta Martin
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 90    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Kutta Martin:     more detail

21. 7 FSM Intrm. 536-550
At least three of the responding officers ) kutta, martin, Nimeisa ) had policeissuefirearms. Police supervisor Ruben told Silander to put on his uniform.
http://www.fsmlaw.org/fsm/decisions/vol7/7fsm536_550.htm
THE SUPREME COURT OF THE FEDERATED STATES OF MICRONESIA TRIAL DIVISION Cite as Davis v. Kutta 7 FSM Intrm. 536 (Chk. 1996)
[7 FSM Intrm. 536]
MENRY DAVIS, Plaintiff,
vs.
JIM KUTTA, HALVERSON NIMEISA, RESAUO MARTIN, ERADIO WILLIAM, FRANCIS RUBEN, JOHNSON SILANDER and the STATE OF CHUUK, Defendants.
CIVIL ACTION NO. 1992-1039
FINDINGS OF FACT AND CONCLUSIONS OF LAW

Martin Yinug Associate Justice
Trial: April 6-8, 1995 Decided: August 6, 1996
APPEARANCES: For the Plaintiff: R. Barrie Michelsen, Esq. John Hollinrake, Esq. Law Offices of R. Barrie Michelsen P.O. Box 1450 Kolonia, Pohnpei FM 96941
[7 FSM Intrm. 537] For the Defendants: Wesley Simina, Esq. Attorney General Office of the Chuuk Attorney General P.O. Box 189 Weno, Chuuk FM 96942 HEADNOTES Civil Procedure Pleadings Issues not specifically raised in pleading may be tried by parties' implied consent. Davis v. Kutta, 7 FSM Intrm. 536, 543 (Chk. 1996). Torts Battery A person is liable to another for battery if he acts intending to cause harmful contact with a third person or an imminent apprehension of such contact, and a harmful contact indirectly results. Davis v. Kutta, 7 FSM Intrm. 536, 544 (Chk. 1996).

22. FSM 10 Intrm. 098-099
JIM kutta, HALVERSON NIMEISA, RESAUO martin,. ERADIO WILLIAM, FRANCIS RUBEN,JOHNSON SILANDER,. and the STATE OF CHUUK,. Defendants. CIVIL ACTION 19921039
http://www.fsmlaw.org/fsm/decisions/vol10/10fsm224_226.html
FSM SUPREME COURT TRIAL DIVISION Cite as Davis v. Kutta 10 FSM Intrm. 224 (Chk. 2001) [10 FSM Intrm. 224] MENRY DAVIS Plaintiff, vs. JIM KUTTA, HALVERSON NIMEISA, RESAUO MARTIN, ERADIO WILLIAM, FRANCIS RUBEN, JOHNSON SILANDER, and the STATE OF CHUUK, Defendants. CIVIL ACTION 1992-1039 ORDER AND MEMORANDUM Martin Yinug Associate Justice Hearing: May 16, 2001 Decided: May 22, 2001 Modified: June 11, 2001 APPEARANCES: For the Plaintiff: Stephen V. Finnen, Esq. P.O. Box 1450 Kolonia, Pohnpei FM 96941 For the Defendants: Ready Johnny, Esq. Chief of Litigation Office of the Chuuk Attorney General P.O. Box 189 Weno, Chuuk FM 96942 HEADNOTES Debtors' and Creditors' Rights The court may modify any order in aid of judgment as justice may require, at any time, upon the application of either party and notice to the other, or on the court's own motion.

23. Maths - Calculus - Martin Baker
Rungekutta Method. Taylor series. x(t0 + h) = x(t0) + hx (t0) + h^2/2 x (t0)+ O(h^3). Copyright (c) 1998-2005 martin John Baker - All rights reserved.
http://www.euclideanspace.com/maths/differential/
Maths - Calculus
General Principles
Differential equations are important for simulating the physical world, examples are: change of position with time, and also the change of pressure with distance through an object. The first type tends to be solved using initial value information, the second type using boundary values. We will cover initial value solutions first, then boundary solutions, in both cases we will cover analytical and numeric methods.
Time varying position - initial value solutions
Equation depends on constraints and positions of forces, for example, if an object is constrained to move in the y-plane and if it is under a constant force then:
Examples from physics
Example 1 - acceleration under gravity
A mass accelerates under the influence of gravity. Due to Newtons second law (Force = Mass * Acceleration), the equations of motion tend to be expressed in terms of the second differential with respect to time, in this case this is a constant defined by the gravity constant. So solving this example is just a case of integrating twice. We need to know the initial value conditions, for instance, the velocity and position at time=0.

24. Maths - Calculus - Martin Baker
RE Rungekutta integration? 2005-06-19 0014. Hi, Thanks, martin. The approachyou suggest makes sense. But it seems that the integrator wasn t the cause
http://www.euclideanspace.com/maths/differential/tom.htm
Maths - Calculus
By: Nobody/Anonymous - nobody
Runge-Kutta integration?

I've spent some time messing around with rigid body simulation, from a computer games/fun perspective. I don't have any problems with the physics, but I have run into a confusing conceptual problem when it comes to integrating the present state of an object to get the new state with Runge-Kutta methods.
At present, I use a modified version of Euler's method*. While a lot of games seem to get away with it, presumably because they have lots of friction forces, my simulation is space-based, and even moderate angular accelerations tend to break it.
I would like to replace it with a 4th order Runge-Kutta method, but there's one fundamental thing I don't understand in RK methods: what if I "don't know the future"? I mean that to use RK4 I think I need to be able to write down time-dependent equations for the forces acting on an object. I can do that for my reaction thrusters (barely), but I also have to model collisions and impacts. I don't see that I can write these down in this way.
So, are collisions a problem for RK4, or can I just do the integration for the continuous forces and add impulses at the end? What's the best way to handle this?

25. Wilhelm Martin Kutta 1867-1944
Translate this page Wilhelm martin kutta 1867-1944. kutta wird 1867 in Pitschen, Oberschlesien, naheder ehemaligen Grenze zu Russisch-Polen geboren.
http://www-hm.ma.tum.de/geschichte/node21.html
Next: Josef Lense 1890-1985
Up: Lebensbilder
Previous: Sebastian Finsterwalder 1862-1951
Wilhelm Martin Kutta 1867-1944
... Angeregt durch den Aufsatz von Herrn Runge ... Die Runge-Kutta Formeln sollten Epoche machen: Kein rechnender Naturwissenschaftler oder Ingenieur auf der Welt, der sie nicht wenigstens dem Namen nach kennt.
Aeroplans Der Gepatschferner i. J. 1896 Das war ein Demokrat ! Aber es wird immer einsamer um Kutta. Pfeiffer: R. Bulirsch, M. Breitner
Next: Josef Lense 1890-1985
Up: Lebensbilder
Previous: Sebastian Finsterwalder 1862-1951
Michael Kaplan
Thu Dec 7 21:19:21 GMT+0100 1995

26. Die Geschichte Der Mathematik An Der TU
Translate this page Der Privatdozent martin Wilhelm kutta, seit 1907 ,, gebührenfreier`` Extraordinariusfür reine und angewandte Mathematik und mit Lehraufträgen betraut,
http://www-hm.ma.tum.de/geschichte/

27. Kepler3
approximating integrals, algorithms to which they are closely related. It waspublished by Carle Runge (18561927) and martin kutta (1867-1944) in 1901.
http://www.math.sunysb.edu/~tony/whatsnew/column/kepler-0101/kepler3.html
Celestial Mechanics on a Graphing Calculator
3. The Runge-Kutta algorithm
The Runge-Kutta algorithm (strictly speaking the fourth-order R-K algorithm; see example ) allows much better accuracy than Euler's method. Their relative efficiency is like that of Simpson's method and left-hand sums for approximating integrals, algorithms to which they are closely related. It was published by Carle Runge (1856-1927) and Martin Kutta (1867-1944) in 1901.
Euler's method and 4th order Runge-Kutta, applied to the restricted 2-body problem with the same initial conditions. The Runge-Kutta method easily accomplishes in 30 steps what Euler's method could not do in 1000. Even though every Runge-Kutta step is computationally the equivalent of 4 Euler steps, the savings are enormous. But when we decrease w to produce more eccentric elliptical orbits, even this powerful method starts to strain.
For w , step sizes of .1 and .05 lead to non-physical solutions. Comments: webmaster@ams.org

28. Lexikon Martin Wilhelm Kutta
martin Wilhelm kutta aus der freienEnzyklopädie Wikipedia und steht unter der GNU Lizenz.
http://lexikon.freenet.de/Martin_Wilhelm_Kutta
A database error has occurred
Query: DELETE FROM `objectcache` WHERE exptime
Function: MediaWikiBagOStuff:_doquery
Error: 1030 Got error 127 from storage engine (localhost)
Backtrace:

29. Lexikon Runge-Kutta-Verfahren
Translate this page Runge-kutta-Verfahren (nach Carl Runge und martin Wilhelm kutta) sind Wenn vom Runge-kutta-Verfahren gesprochen wird, ist oft das populäre
http://lexikon.freenet.de/Runge-Kutta-Verfahren
A database error has occurred
Query: DELETE FROM `objectcache` WHERE exptime
Function: MediaWikiBagOStuff:_doquery
Error: 1030 Got error 127 from storage engine (localhost)
Backtrace:

30. Skolavpohode.cz
kutta, martin Wilhelm (18671944). Nemecký matematik (pracoval v Mnichove), kterýse proslavil úcinným numerickým schématem na rešení diferenciálních rovnic
http://www.skolavpohode.cz/clanek.asp?polozkaID=3711

31. Prime Numbers
As will the work of Emile Picard (18561941) and martin kutta(1867-1944), bothof whom used recursive equations in solutions to differential equations.
http://hypatia.math.uri.edu/~kulenm/diffeqaturi/m381f00fp/theron/theronmp.html
Difference Equations
and
Recursive Relations
Number theory index History Topics Index It is from these recursive equations that some mathematical wonders are created. We begin with plane filling curves or fractals, which are curves that fill planes without any holes. The first such curve was discovered by Guiseppe Peano in 1890. Other mathematicians who used difference equations in their work with plane filling curves include David Hilbert (1862-1943), and Niels Fabian Von Koch (1870-1924). The relevant work all three will be discussed in the following. As will the work of Emile Picard (1856-1941) and Martin Kutta (1867-1944), both of whom used recursive equations in solutions to differential equations. There are curves that fill a plane without holes. The first such curve was discovered by Guiseppe Peano in 1890 and the second by D. Hilbert (1862-1943). Calling them Peano Monster Curves, B. Mandelbrot collected a series of quotations in support of this terminology.
Fractal Curves and Dimension
Fractals burst into the open in early 1970s. Their breathtaking beauty captivated many a layman and a professional alike. Striking fractal images can often be

32. Numerical Ordinary Differential Equations -- Facts, Info, And Encyclopedia Artic
(Click link for more info and facts about martin kutta) martin kutta. One oftheir fourthorder methods is especially popular.
http://www.absoluteastronomy.com/encyclopedia/n/nu/numerical_ordinary_differenti
Numerical ordinary differential equations
[Categories: Ordinary differential equations, Numerical analysis]
Numerical ordinary differential equations is the part of
(Click link for more info and facts about numerical analysis) numerical analysis which studies the numerical solution of
(Click link for more info and facts about ordinary differential equations) ordinary differential equations (ODEs). This
field is also known under the name (Click link for more info and facts about numerical integration) numerical integration but
some people reserve this term for the computation of (The result of a mathematical integration; F(x) is the integral of f(x) if dF/dx = f(x)) integral s.
Many differential equations cannot be solved analytically, in which
case we have to satisfy ourselves with an approximation to the
solution. The (A precise rule (or set of rules) specifying how to solve some problem) algorithm s studied here can be used to compute such
an approximation. An alternative method is to use techniques from
(A hard lump produced by the concretion of mineral salts; found in hollow organs or ducts of the body)

33. Numerical Ordinary Differential Equations: Information From Answers.com
1895 Carle Runge publishes the first Runge-kutta method. 1905 - martin kuttadescribes the popular fourth-order Runge-kutta method.
http://www.answers.com/topic/numerical-ordinary-differential-equations
showHide_TellMeAbout2('false'); Business Entertainment Games Health ... More... On this page: Wikipedia Best of Web Mentioned In Or search: - The Web - Images - News - Blogs - Shopping Numerical ordinary differential equations Wikipedia Numerical ordinary differential equations Numerical ordinary differential equations is the part of numerical analysis which studies the numerical solution of ordinary differential equations (ODEs). This field is also known under the name numerical integration but some people reserve this term for the computation of integrals Many differential equations cannot be solved analytically, in which case we have to satisfy ourselves with an approximation to the solution. The algorithms studied here can be used to compute such an approximation. An alternative method is to use techniques from calculus to obtain a series expansion of the solution. Ordinary differential equations occur in many scientific disciplines, for instance in mechanics chemistry ecology , and economics . In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.

34. List Of Mathematicians: Information From Answers.com
Kuratowski (Poland, 1896 1980); martin Wilhelm kutta (Silesia/Germany, 1867 -1944) Anders martin-Löf (Sweden); Dragan Marusic (Slovenia,
http://www.answers.com/topic/list-of-mathematicians
showHide_TellMeAbout2('false'); Business Entertainment Games Health ... More... On this page: Wikipedia Mentioned In Or search: - The Web - Images - News - Blogs - Shopping List of mathematicians Wikipedia List of mathematicians The famous mathematicians are listed below in English alphabetical transliteration order (by surname
Contents: top A B C ... Z
A

35. Biography-center - Letter K
kutta, martin wwwhistory.mcs.st-and.ac.uk/~history/Mathematici ans/kutta.html;Kuttner, Brian www-history.mcs.st-and.ac.uk/~history/Mathematicians/Kuttner.
http://www.biography-center.com/k.html
Visit a
random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish
K
403 biographies
  • K hayyam, Omar
    www-history.mcs.st-and.ac.uk/~history/Mathematicians/Khayy am.html
  • K lee, Paul
    www.spartacus.schoolnet.co.uk/ARTklee.htm
  • K nopp, Konrad
    www-history.mcs.st-and.ac.uk/~history/Mathematicians/Knopp .html
  • K oss, Johann Olav
    www.olympic.org/uk/athletes/heroes/bio_uk.asp?PAR_I_ID=74776
  • www-history.mcs.st-and.ac.uk/~history/M athematicians/Konig_Julius.html
  • www-history.mcs.st-and.ac.uk/~history/Mathematicians/Konig_Samuel.h tml
  • www -history.mcs.st-and.ac.uk/~history/Mathematicians/Konigsberger.html
  • www-history.mcs. st-and.ac.uk/~history/Mathematicians/Kurschak.html
  • Kabir, www.geocities.com /athens/8107/bios1.html#kabir
  • Kac, Mark www-history.mcs.st-and.ac.uk/~history/Mathematicians/Kac.html
  • Kaestner, Abraham

36. Martin Kutta Université Montpellier II
Translate this page martin kutta (1867-1944). Cette image et la biographie complète en anglais résidentsur le site de l’université de St Andrews Écosse
http://ens.math.univ-montp2.fr/SPIP/article.php3?id_article=1413

37. Golem.de - Lexikon
Translate this page Dieser Artikel basiert auf dem Artikel martin Wilhelm kutta aus der freienEnzyklopädie Wikipedia und steht unter der GNU Lizenz für freie Dokumentation.
http://lexikon.golem.de/Martin_Wilhelm_Kutta
News Forum Archiv Markt ... Impressum Lexikon-Suche Lizenz Dieser Artikel basiert auf dem Artikel Martin Wilhelm Kutta aus der freien Enzyklopädie Wikipedia und steht unter der GNU Lizenz für freie Dokumentation . In der Wikipedia ist eine Liste der Autoren verfügbar, dort kann man den Artikel bearbeiten Letzte Meldungen SED, besser als Plasma-TV und LCD? Xda mini S - neues WindowsCE-Smartphone von O2 (Update) ... Originalartikel
Lexikon: Martin Wilhelm Kutta
Martin Wilhelm Kutta 3. November in Pitschen Oberschlesien , heute Byczyna Polen 25. Dezember in ) war ein deutscher Mathematiker 1885 bis 1890 studierte er an der , danach bis 1894 an der . 1894 - 1897 war Kutta Assistent von Walther von Dyck an der . 1898 verbrachte er ein halbes Jahr an der University of Cambridge RWTH Aachen 1912 wurde Kutta ordentlicher Professor an der und blieb dort bis zu seiner Emeritierung 1935. 1901 hatte er aufbauend auf einen Artikel von Carl Runge das Runge-Kutta-Verfahren siehe auch: Kutta-Schukowski-Transformation Klassisches Runge-Kutta-Verfahren
Personendaten
NAME Kutta, Martin Wilhelm

38. The Computer Journal, Volume 1, Issue 3, Pp. 118-123 Abstract.
Rungekutta methods for integrating differential equations on high speed DW martin. National Physical Laboratory, Teddington, UK. The Runge-kutta
http://www.oxfordjournals.org/computer_journal/hdb/Volume_01/Issue_03/010118.sgm

39. Genealogy::nobel - PhysComments Blackboards
Physik Universität Königsberg 1891; David Hilbert Universität Königsberg 1885;martin kutta München 1900; Hermann Minkowski Königsberg 1885
http://www.physcomments.org/wiki/index.php?title=Genealogy::nobel

40. Kutta
Translate this page martin Wilhelm kutta (1867 - 1944). Nach Übernahme des Stuttgarter Lehrstuhlshat kutta nichts mehr veröffentlicht. Quellen. Pogg. 4, S. 821, Pogg.
http://www.kk.s.bw.schule.de/mathge/kutta.htm
Martin Wilhelm Kutta (1867 - 1944)
Numerische und angewandte Mathematik (Theorie des Auftriebs, Photogrammetrie, numerische Integration) geboren in Pitschen (Oberschlesien) " Als Hochschullehrer war er wegen der Klarheit und Anschaulichkeit seiner Vorlesungen sehr geschätzt; man rühmt ihm nach, daß er auch Ingenieuren , die die Mathematik nich liebten, diese interessant zu machen verstand." NDB 7, S. 349f
  • Elliptische und andere Integrale bei Wallis. Bib. Math. (3) 2 (1901), S. 230-234
Quellen:
  • Pogg. 4, S. 821, Pogg. 5, S. 695, Pogg. 6, S. 1437, Pogg 7a, S. 978 Werner Schulz: Kutta. In Neue Deutsche Biographie (NDB), Bd. 7, S. 348-350
[Stuttgarter Mathematiker] [Homepage KK] Bertram Maurer 10.03.1998

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 2     21-40 of 90    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter