Geometry.Net - the online learning center
Home  - Scientists - Kuratowski Kazimierz
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 102    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Kuratowski Kazimierz:     more books (26)
  1. Introduction to Set Theory and Topology by Kazimierz Kuratowski, 1972-06
  2. Introduction to calculus (International series of monographs on pure and applied mathematics) by Kazimierz Kuratowski, 1961
  3. Topology - Volume I by Kazimierz Kuratowski, 1966-06
  4. Set theory (Studies in logic and the foundations of mathematics) by Kazimierz Kuratowski, 1968
  5. Half Century of Polish Mathematics: Remembrances and Reflections (Pure & Applied Mathematics Monograph) by Kazimierz Kuratowski, 1980-06
  6. Topologists: Waclaw Sierpinski, René Thom, Henri Poincaré, Kazimierz Kuratowski, Felix Hausdorff, John Milnor, Vladimir Arnold
  7. Members of the Polish Academy of Learning: Waclaw Sierpinski, Stefan Banach, Kazimierz Kuratowski, Hugo Steinhaus, Edward Flatau
  8. European Mathematician Introduction: Kazimierz Kuratowski, Lodovico Ferrari, Rolf Nevanlinna, Viggo Brun, Thomas Fincke, François D'aguilon
  9. Mitglied Der Polnischen Akademie Der Wissenschaften: Stefan Banach, Kazimierz Kuratowski, Jerzy Buzek, Manfred Lachs, Ludwik Fleck (German Edition)
  10. University of Warsaw Alumni: Frédéric Chopin, Menachem Begin, Waclaw Sierpinski, Kazimierz Kuratowski, Alfred Tarski, Witold Gombrowicz
  11. Polish Scientist Introduction: Kazimierz Kuratowski, Rudolf Günsberg, Emil Godlewski, Jan Brozek, Józef Zawadzki, Leopold Infeld
  12. Polish Academy of Learning: Members of the Polish Academy of Learning, Waclaw Sierpinski, Stefan Banach, Kazimierz Kuratowski, Hugo Steinhaus
  13. Polish Mathematicians of Jewish Descent: Stanislaw Ulam, Kazimierz Kuratowski, Benoît Mandelbrot, Alfred Tarski, Hugo Steinhaus, Vilna Gaon
  14. Topologe (20. Jahrhundert): Kazimierz Kuratowski, Luitzen Egbertus Jan Brouwer, Alexander Grothendieck, Grigori Jakowlewitsch Perelman (German Edition)

41. Math Lessons - Kazimierz Kuratowski
Math Lessons kazimierz kuratowski. kazimierz kuratowski. kazimierzkuratowski (born February 2 1896, Warsaw, died June 18, 1980, Warsaw) was a Polish
http://www.mathdaily.com/lessons/Kazimierz_Kuratowski
Search
Mathematics Encyclopedia and Lessons
Lessons
Popular Subjects
algebra arithmetic calculus equations ... more
References
applied mathematics mathematical games mathematicians more ... Polish mathematicians
Kazimierz Kuratowski
Kazimierz Kuratowski (born February 2 Warsaw , died June 18 Warsaw ) was a Polish mathematician Among his contributions to mathematics are:
External links
Categories 1896 births 1980 deaths ... Polish mathematicians Last updated: 09-02-2005 16:50:46 algebra arithmetic calculus equations ... mathematicians

42. Math Lessons - Kazimierz Kuratowski
Math Lessons kazimierz kuratowski. kazimierz kuratowski. (Redirected fromkuratowski). kazimierz kuratowski (born February 2 1896, Warsaw,
http://www.mathdaily.com/lessons/Kuratowski
Search
Mathematics Encyclopedia and Lessons
Lessons
Popular Subjects
algebra arithmetic calculus equations ... more
References
applied mathematics mathematical games mathematicians more ... Polish mathematicians
Kazimierz Kuratowski
(Redirected from Kuratowski Kazimierz Kuratowski (born February 2 Warsaw , died June 18 Warsaw ) was a Polish mathematician Among his contributions to mathematics are:
External links
Categories 1896 births 1980 deaths ... Polish mathematicians Last updated: 09-02-2005 16:50:46 algebra arithmetic calculus equations ... mathematicians

43. Kazimierz Kuratowski
Translate this page Begrifferklärung kazimierz kuratowski. Dieser Artikel basiert auf dem Artikelkazimierz kuratowski (http//de.wikipedia.org/wiki/kazimierz_kuratowski)
http://www.netzwelt.de/lexikon/Kazimierz_Kuratowski.html
  • Themen Ratgeber Shopping Forum ... PDA
  • Sie sind hier: Home Lexikon
    Kazimierz Kuratowski
    Kazimierz Kuratowski 2. Februar in Warschau Polen 18. Juni in Warschau, Polen) war ein polnischer Mathematiker Kuratowski wurde am 2. Februar in Warschau geboren. Seine Eltern waren Marek Kuratow, ein Rechtsanwalt, und Rosa von Karzewski. Er schloss das philologische Chrzanowski-Gymnasium in Warschau ab und ging anschließend ( ) nach Glasgow , um dort Mathematik zu studieren. Nach der Gründung der polnischen Universität in Warschau kehrte er dorthin zurück. schloss er sein Studium an der Warschauer Universität ab und promovierte mit einer zweiteiligen Arbeit, die folgendes umfasste: 1. Eine axiomatische Fundierung der Topologie , indem er die so genannte Axiomatik der Abschlüsse einführte ( "Sur la notion de l'ensemble fini" , Fundamenta Mathematicae 1, 1920) 2. Die endgültige Entscheidung des Problems der irreduziblen Kontinua, die das Thema der Pariser Doktorarbeit von Janiszewski gewesen war. Doktorvater war Sierpinski; Janiszewski, der offizielle Betreuer, war damals schon nicht mehr am Leben. Im Herbst desselben Jahres habilitierte er sich an der Warschauer Universität mit der Lösung eines Problems aus der Mengenlehre , das ursprünglich von de la Vallée Poussin, einem belgischen Mathematiker, gestellt worden war. Zwei Jahre später wurde er stellvertretender Professor am zweiten Lehrstuhl für Mathematik an der Warschauer Universität.

44. Prominent Poles
kazimierz kuratowski, mathematician. Photo of kazimierz kuratowski, kazimierz kuratowski s father, Marek kuratowski (according to one source his name
http://www.angelfire.com/scifi2/rsolecki/kazimierz_kuratowski.html
setAdGroup('67.18.104.18'); var cm_role = "live" var cm_host = "angelfire.lycos.com" var cm_taxid = "/memberembedded"
Search: Lycos Angelfire Free Games Share This Page Report Abuse Edit your Site ... Next
Prominent Poles
Kazimierz Kuratowski, mathematician
Born: February 2, 1896, in Warsaw, Poland
Died: June 18, 1980, in Warsaw, Poland The early days.
Higher education.
Professorship in Lwow.
He was appointed as a professor at the Technical University of Lwow in 1927. The mathematicians of Lwow did a great deal of mathematical research in the cafés of the city. The Scottish Café was the most popular with the mathematicians in general but not with Kuratowski who,frequented Ludwik Zalewski's Confectionery at 22 Akademicka Street. It was in the Scottish Café, however, that the famous Scottish Book consisting of open questions posed by the mathematicians working there came into being. Kuratowski (and Steinhaus) sometimes joined their colleagues in the Scottish Café but he had left Lwow before the mathematicians began writing down the problems in the Scottish Book. At Lwow, however, Kuratowski worked with Banach and they answered some fundamental problems on measure theory.
Profesorship in Warswa.

45. Ron Klink,Powojnik Prosty,WrestleMania 21,Mebibyte,OpenTV,Bundesstraße 58,Vanit
College,Iggy Pop,kazimierz kuratowski,Anselme Gaëtan Desmarest,Makedonien,?,Contrada Capitana dell Onda,Sorley MacLean,,Cache,Moose Pass,
http://www.jinhui.saiyan.ws/380.htm
Home Previous Next Reference ...
  • Ron Klink : Ronald Klink (born September 23 , 1951 ) is a Demo Powojnik prosty : Powojnik prosty,Szablon:Rostab gatunek,Azja,Domena (biologia),Dwuliścienne,Eukarioty,Europa,Gatunek (biologia),Gromada (biologia),Jaskrowate WrestleMania 21 : WM21,WrestleMania 21,Template:WrestleMania,2005,2005 Royal Rumble,A Few Good Men,Adam Copeland,Akebono Taro,Anaheim,April 3 Mebibyte : Mebibyte,Byte,Data,Gibibyte,Kibibyte,Megabyte,SI-prefix,IEC OpenTV Vanity-Rufnummer : 愛立信 ( Telefonaktiebolaget L. M. Ericsson ), 瑞典 电信 Santa Fe, Texas : Santa Fe, TX,Santa Fe, Texas,Template:GR,Template:Mapit-US-cityscale,Template:Geolinks-US-cityscale,Template:Geolinks-US-start,Template:Geolinks-start,Template:Coor,2000,African American (U.S. Census) Carlos Pellicer Francis Durbridge : Francis Durbridge ECE Projektmanagement : ECE Projektmanagement Minutemen : Minutemen Długość geograficzna : Długość geograficzna ( ang. longitude ; symbol λ ) Mikoyan-Gurevich MiG-3 : MiG-3,Mikoyan-Gurevich MiG-3,Template:Airlistbox,1941,1942,Artem Mikoyan,Centre of gravity,Dihedral,Fighter aircraft,Heinkel He 100 L. L. Zamenhof

46. Lexikon: Kazimierz Kuratowski - Begriff

http://lexikon.donx.de/?action=details&show=Kazimierz Kuratowski

47. KURATOWSKI
kuratowski was born on 2nd Feb 1896 in Warsaw, Poland. E Marczewski, On thepapers of kazimierz kuratowski in set theory and measure theory (Polish) ,
http://www.algana.co.uk/FamousNames/K/kuratowski.htm
KAZIMWIERZ KURATOWSKI
Kuratowski was born on 2nd Feb 1896 in Warsaw, Poland. When he left secondary school, he decided that he wanted to become an engineer and he studied at The University of Glasgow, in Scotland. In 1917, Janiszewski and Mazurkiewicz conducted a topology seminar which stimulated Kuratowski's interests in this field and he wrote On the Definitions in Mathematics . After graduating in 1919, Kuratowski undertook doctoral studies working under Janiszewski and Mazurkiewicz. In 1921, Kuratowski was awarded his doctorate, but sadly his supervisor Janiszewski had died in 1920. Janiszewski had been the leader in a move to set up the new journal Fundamenta Mathematicae and the first volume, which appeared in 1920, contained a joint paper Sur les Continus Indécomposable by Janiszewski and Kuratowski. Kuratowski was appointed as a professor at the Technical University of Lvov in 1927. At Lvov, Kuratowski worked with Banach and they answered some fundamental problems on measure theory. While spending a month at Princeton in 1936, he wrote a joint paper with von Neumann. Kuratowski's main work was in the area of topology and set theory. He used the notion of a limit point to give closure axioms to define a topological space. His 1930 work on non-planar graphs is of fundamental importance in graph theory and computer science.He showed that a necessary and sufficient condition for a graph G to be planar is that it does not contain a subgraph homeomorphic to either K5 or K3,3. He died on 18th June 1980 in Warsaw, Poland.

48. Polski Matematyk Kazimierz Kuratowski
Temat polski matematyk kazimierz kuratowski. kazimierz kuratowski to polskimatematyk . Urodzil sie 2 lutego 1896 w Warszawie, w rodzinie Marka Kuratowa,
http://gotowce.com.pl/prace/5105.htm
Reklama Kontakt
Temat: polski matematyk Kazimierz Kuratowski
wygenerowana: 2005-05-27 20:21:40
Info:
-Przedmiot:
Matematyka
-Zakres: Przedmioty ¶cis³e
-Autor: kamil
-Dodano:
-¦rednia ocena:
-Ilo¶æ g³osów:
-Oceñ prace:
Szukaj prac: dodaj now± prace skomentuj prace
wersja do druku dodaj do ulubionych linki do pracy zg³o¶ plagiat
  • Nowe FORUM
    Jêzyk polski
    Historia ... Studia
  • GRY JAVA
  • MotoOferty.pl tutaj sprzedasz i kupisz u¿ywany lub nowy samochód
  • Komentarze do pracy: Dodaj komentarz Nie ma jeszcze ¿adnych komentarzy. - Autorzy serwisu nie odpowiadaj± za tre¶æ umieszczanych prac. - prace matura korepetycje ksi±¿ki ... kontakt Ta strona pochodzi z serwisu gotowce.com.pl

    49. Golem.de - Lexikon
    Translate this page Dieser Artikel basiert auf dem Artikel kazimierz kuratowski aus der freienEnzyklopädie Wikipedia und steht unter der GNU Lizenz für freie Dokumentation.
    http://lexikon.golem.de/Kazimierz_Kuratowski
    News Forum Archiv Markt ... Impressum Lexikon-Suche Lizenz Dieser Artikel basiert auf dem Artikel Kazimierz Kuratowski aus der freien Enzyklopädie Wikipedia und steht unter der GNU Lizenz für freie Dokumentation . In der Wikipedia ist eine Liste der Autoren verfügbar, dort kann man den Artikel bearbeiten Letzte Meldungen SED, besser als Plasma-TV und LCD? Xda mini S - neues WindowsCE-Smartphone von O2 (Update) ... Originalartikel
    Lexikon: Kazimierz Kuratowski
    Kazimierz Kuratowski 2. Februar in Warschau Polen 18. Juni in Warschau, Polen) war ein polnischer Mathematiker Kuratowski wurde am 2. Februar in Warschau geboren. Seine Eltern waren Marek Kuratow, ein Rechtsanwalt, und Rosa von Karzewski. Er schloss das philologische Chrzanowski-Gymnasium in Warschau ) nach Glasgow , um dort Mathematik mit einer zweiteiligen Arbeit, die folgendes umfasste: 1. Eine axiomatische Fundierung der Topologie "Sur la notion de l'ensemble fini" , Fundamenta Mathematicae 1, 1920) irreduziblen Kontinua , die das Thema der Pariser Doktorarbeit von Janiszewski gewesen war. Doktorvater war Sierpinski; Janiszewski, der offizielle Betreuer, war damals schon nicht mehr am Leben.

    50. Kazimierz Kuratowski Biography .ms
    External links. See also. Famous Quotes Biography of kuratowski. deKazimierzkuratowski plKazimierz kuratowski. A B C D E F G H I J
    http://kazimierz-kuratowski.biography.ms/
    Kazimierz Kuratowski
    Kazimierz Kuratowski (born February 2 Warsaw , died June 18 Warsaw ) was a Polish mathematician Among his contributions to mathematics are:
    External links
    See also
    de:Kazimierz Kuratowski pl:Kazimierz Kuratowski A B C D ... Home page

    51. The Legacy Of R. L. Moore - Moore, Robert L. -- Center For American History User
    kuratowski, kazimierz, 1896 Lefschetz, Solomon, 1884-1972. Moore, EliakimHastings, 1862-1932 Moore, RL (Robert Lee), 1882- Richardson, Roland George
    http://www.discovery.utexas.edu/rlm/reference/cah.html
    Moore, Robert L.
    Center for American History User's Guide
    Moore, R.L. (Robert Lee), 1882-
    TITLE:
    Moore, R.L., Papers, 1898-1974.
    DESCRIPTION:
    32 ft.
    NOTES:
    Organized into four series: 1. Mathematical papers. 2. Correspondence. 3. University of Texas, Teaching, National Academy of Sciences. 4. Personal.
    Summary: Collection documents the career of R.L. Moore (1882-1974) at the University of Texas (1920-1974), with a small amount of material concerning his doctoral studies at the University of Chicago. The papers reflect Moore's research in point-set topology. There are records of Moore's presidency of the American Mathematical Society (1937-39). The papers also include a collection of G.B. Halsted's articles and translations, together with publications about Halsted. Reprints of Moore's papers, Moore's reprint collection, and theses and dissertations prepared under his supervision are included.
    Correspondents include R.C. Archibald, S. Armentrout, J. and L. Barrett, E.F. Beckenbach, E.T. Bell, R.H. Bing, G.D. and G. Birkhoff, G.A. Bliss, M. Bocher, E.W. Chittenden, L.E. Dickson, E. Dyer, M. Frechet, G.B. Halsted, J.R. Kline, C. Kuratowski, S. Lefschetz, E.H. Moore, R.G.D. Richardson, M.E. Rudin, W. Sierpinski, J.M. Slye, M. Stone, O. Veblen, G.T. Whyburn, and R.L. Wilder. Material includes correspondence, research notebooks, drafts, teaching material, reprints, photographs, and sound recordings.
    Before 1984 held by the University of Texas at Austin Humanities Research Center.

    52. Kuratowski's Closure Operation In Topology
    The Polish mathematician kazimierz (Casimir) kuratowski (18961980) developed aradically different approach to specifying a topology for a set.
    http://www.applet-magic.com/kuratowski.htm
    applet-magic.com
    Thayer Watkins
    Silicon Valley
    USA
    Kuratowski's Closure Operation in Topology
    A topology for a set S is a collection of subsets of S such that
    • the union of any arbitrary subcollection is also a member of the collection.
    • the intersection of finite numbers of members of the collection is also a member of the collection.
    • the null set belongs to the collection.
    • the whole set S belongs to the collection.
    The elements of the collection are called the open sets of the topology. It is important to recognize that the openness of a set is not a property of the set itself; openness refers only to the membership of the set in the collection of subsets which is called the topology. A set is defined as being closed with respect to a topology if its complement is open with respect to the topology; i.e., if its complement belongs to the topology. At least two sets, the null set and the whole set S, are both open and closed in any topology of S. If the closed sets of a topology are given the open sets can easily be constructed since they are simply the complements of the closed sets. The Polish mathematician Kazimierz (Casimir) Kuratowski (1896-1980) developed a radically different approach to specifying a topology for a set. Kuratowski considered particular functions from the set of subsets of S to the set of subsets of S; i.e.

    53. Kazimierz (imię)
    kazimierz – wspólczesnie przyjeta forma staropolskiego imienia meskiego Kazimir, kazimierz kuratowski kazimierz Lipien kazimierz Michalowski
    http://encyklopedia.servis.pl/wiki/Kazimierz_(imię)
    Nauka i Edukacja w Science Servis - Polski Serwis Naukowy Astronomia Biologia Chemia Fizyka ... Encyklopedia
    To jest artykuł z cyklu
    imiona
    alfabetyczna lista imion imieniny imiona bałtyjskie ... imiona na świecie Kazimierz – wsp³Å‚cześnie przyjęta forma staropolskiego imienia męskiego Kazimir , (z odmiankami Kazimirz Kazimiar Kazimier Kaźmir ), składającego sie z człon³w: Kazi- ("niszcz, psuj, niwecz" od kazić "niszczyć, psuć", por³wnaj wsp³Å‚czesne od-kazić "od-psuć") i -mir ("pok³j, spok³j"). Oznacza "ten, kt³ry (niech) niszczy pok³j". (niszcz pok³j! = kaź mir! (staropolskie kazi mir!). Imiona słowiańskie życzyły i wr³Å¼yły posiadaczowi przyszłość. Były to gł³wnie imiona wojenne. Kazimierz imieniny obchodzi: 4 marca i 22 marca Imię Kazimierz nosili kr³lowie i książęta:
    Znane osoby noszące imię Kazimierz

    54. Brandys, Kazimierz --  Encyclopædia Britannica
    kazimierz kuratowski University of St. Andrews Information on the life and workof this Polandborn mathematician. kazimierz kuratowski
    http://www.britannica.com/eb/article?tocId=9343843

    55. Planar Graph -- Facts, Info, And Encyclopedia Article
    more info and facts about kazimierz kuratowski) kazimierz kuratowski provideda characterization of planar graphs, now known as kuratowski s theorem
    http://www.absoluteastronomy.com/encyclopedia/p/pl/planar_graph.htm
    Planar graph
    [Categories: Graphs]
    In (Click link for more info and facts about graph theory) graph theory , a planar graph is a graph that can be embedded in a (A carpenter's hand tool with an adjustable blade for smoothing or shaping wood) plane so that no edges intersect. For example, the following two graphs are planar:
    (the second one can be redrawn without intersecting edges by moving one of the diagonal edges to the outside),
    while the two graphs shown below are not planar:
    It is not possible to redraw these without edge intersections. In fact, these two are the smallest non-planar graphs, a consequence of the characterization below.
    The (The property of being smooth and shiny) Polish mathematician (Click link for more info and facts about Kazimierz Kuratowski) Kazimierz Kuratowski provided a characterization of planar graphs, now known as Kuratowski's theorem
    A finite graph is planar (Click link for more info and facts about if and only if) if and only if it does not contain a subgraph that is an expansion of K (the (Click link for more info and facts about complete graph) complete graph on 5 vertices) or K (Click link for more info and facts about complete bipartite graph) complete bipartite graph on six vertices, three of which connect to each of the other three).

    56. Topology -- Facts, Info, And Encyclopedia Article
    Finally, a further slight generalization in 1922, by (Click link for more infoand facts about kazimierz kuratowski) kazimierz kuratowski,
    http://www.absoluteastronomy.com/encyclopedia/t/to/topology.htm
    Topology
    [Categories: Academic disciplines, Geometry, Topology]
    Topology (A native or inhabitant of Greece) Greek topos , place and logos , study) is a branch of (A science (or group of related sciences) dealing with the logic of quantity and shape and arrangement) mathematics concerned with the study of ((mathematics) any set of points that satisfy a set of postulates of some kind) topological space s. When the discipline was first introduced it was called analysis situs (Any dialect of the language of ancient Rome) Latin analysis of place
    Topology is concerned with the study of the so-called (Click link for more info and facts about topological properties) topological properties of figures, that is to say properties that do not change under bicontinuous one-to-one transformations (called (Click link for more info and facts about homeomorphism) homeomorphism s). Two figures that can be deformed one into the other
    are called homeomorphic, and are considered to be the same from
    the topological point of view. For example a solid cube and a solid sphere are homeomorphic.
    However, it is not possible to deform a sphere into a circle by a

    57. Kuratowski Closure Axioms
    They were first introduced by kazimierz kuratowski, in a slightly different formthat applied only to Hausdorff spaces. A similar set of axioms can be used
    http://www.algebra.com/algebra/about/history/Kuratowski-closure-axioms.wikipedia
    Kuratowski closure axioms
    Regular View Dictionary View (all words explained) Algebra Help my dictionary with pronunciation , wikipedia etc Wikimedia needs your help in its 21-day fund drive. See our fundraising page
    Over US$150,000 has been donated since the drive began on 19 August. Thank you for your generosity!
    Kuratowski closure axioms
    In topology and related branches of mathematics , the Kuratowski closure axioms are a set of axioms which can be used to define a topological structure on a set . They are equivalent to the more commonly used open set definition. They were first introduced by Kazimierz Kuratowski , in a slightly different form that applied only to Hausdorff spaces A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator
    Definition
    A topological space X c l is a set X with a function called the closure operator where is the power set of X The closure operator has to satisfy the following properties
  • Isotonicity Idempotence (Preservation of binary unions) (Preservation of nullary unions)
  • Notes
    Axioms (3) and (4) can be generalised (using a proof by mathematical induction ) to the single statement:
    (Preservation of finitary unions).

    58. Kazimierz Kuratowski Definition Im Mathe Lexikon
    Translate this page kazimierz kuratowski - Definition, Erklärung, Bedeutung von kazimierz Dieser Artikel basiert auf dem Artikel kazimierz kuratowski aus der freien
    http://www.matheboard.de/lexikon/Kazimierz_Kuratowski,definition.htm
    Startseite Mathe Board Mathe Bücher Mathe Tools ... Partner
    Kazimierz Kuratowski - Definition, Erklärung, Bedeutung von Kazimierz Kuratowski im Lexikon für Mathematik
    A B C D ... Z
    Kazimierz Kuratowski
    Definition, Erklärung, Bedeutung
    Diskussion Verbessern
    Kazimierz Kuratowski
    Kazimierz Kuratowski 2. Februar 18. Juni polnischer Mathematiker Kuratowski wurde am 2. Februar in Warschau geboren. Seine Eltern waren Marek Kuratow, ein Rechtsanwalt, und Rosa von Karzewski. Er schloss das philologische Chrzanowski-Gymnasium in Warschau ab und ging anschließend ( ) nach Glasgow , um dort Mathematik zu studieren. Nach der Gründung der polnischen Universität in Warschau kehrte er dorthin zurück. schloss er sein Studium an der Warschauer Universität ab und promovierte mit einer zweiteiligen Arbeit, die folgendes umfasste: 1. Eine axiomatische Fundierung der Topologie , indem er die so genannte Axiomatik der Abschlüsse einführte ( "Sur la notion de l'ensemble fini" , Fundamenta Mathematicae 1, 1920) 2. Die endgültige Entscheidung des Problems der

    59. Kazimierz Kuratowski Université Montpellier II
    kazimierz kuratowski kazimierz Zarankiewicz Keen Keith Stewartson
    http://ens.math.univ-montp2.fr/SPIP/article.php3?id_article=1410

    60. In The Beginning There Were Algebras Of Concrete Relations
    kuratowski, kazimierz. Lindenbaum, A. Maddux, Roger D. McKinsey, JCC. Monk, J.Donald. Mostowski, Andrzej. Nemeti, Istvan. Schwabhauser, Wolfram
    http://www1.chapman.edu/~jipsen/talks/Tarski2001/Tarskitalk.htm
    The many descendants of Tarski’s Relation Algebras
    Peter Jipsen
    Vanderbilt University
    Alfred Tarski Centenary Conference, Warsaw, May 29, 2001
    A story about the creation of Relation Algebras
    In the beginning there were algebras of concrete relations. Tarski saw they were good, and he separated the interesting ideas from the trivial ones. And Tarski said “Let there be an abstract theory about these algebras”. So he made the theory of Relation Algebras. And he saw it was good. And then Tarski said “Let the theory produce all the known results about concrete relations”. And it was so. And he proved many interesting new results about relation algebras, including a correspondence with 3-variable logic that allowed the interpretation of set theory and he provided the first example of an undecidable equational theory. And Tarski said “Let the minds teem with new conjectures, let ideas fly, and let the community produce many new related theories and results”. Thus the field of relation algebras was born, with its many applications and connections to other areas. (all quotes fictitious; passage based on well known source)

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 102    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

    free hit counter