Geometry.Net - the online learning center
Home  - Scientists - Koch Helge Von
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Koch Helge Von:     more detail
  1. Instruments and Measurements: Chemical Analysis, Electric Quantities, Nucleonics and Process Control: v. 2 by Helge Von Koch, Gregory Ljungberg, 1961-12
  2. Mathématicien Suédois: Ivar Fredholm, Albert Victor Bäcklund, Waloddi Weibull, Gösta Mittag-Leffler, Helge Von Koch, Johan Håstad (French Edition)
  3. Instruments and Measurements: Chemical Analysis, Electric Quantities, Nucleonics and Process Control, Vol. 2 (Proceedings Fifth International Instruments & Measurements Conference, Sep 1960, Stockholm, Sweden) by Helge; Ljungberg, Gregory; Reio, Vera (editors) von Koch, 1961-01-01
  4. Föreläsningar Öfver Teorin För Transformationsgrupper (Swedish Edition) by Helge Von Koch, 2010-01-09
  5. Instruments and Measurements: Chemical Analysis, Electric Quantities, Nucleonics and Process Control, Vol. 1 (Proceedings Fifth International Instruments & Measurements Conference, Sep 1960, Stockholm, Sweden) by Helge; Ljungberg, Gregory; Reio, Vera (editors) von Koch, 1961-01-01
  6. Instruments & Measurements 2vol by Helge Von Koch, 1961

61. Mathematics List Pt. 7.
koch, helge von. On A Class Of Equations Connected With Eulermaclaurin s Sum-Formula.16 pp. Almquist Wiksellis Boktryckeri-AB. 1921. Softcover.
http://www.significantbooks.com/mthl7.htm
Go back to Catalog Lists To inquire about any of these items contact us by e-mail at: inquire@significantbooks.com Start of Math page 7.
Go To Math page
Mathematics List Page 7.
Authors, La. thru Mo.
  • Koch, Helge Von. On A Class Of Equations Connected With Euler-maclaurin's Sum-Formula.
  • Koecher, Max. Analysis in reellen Jordan Algebren. 67- 74, pp. Der Akademie der Wissenschaften in gottingen. IIa. Mathematisch - Physikalische Dlasse. Nr. 4, 1958. Gottingen. (Pamphlet) very good condition with light browning of cover edges. MATH13566 $10.00
  • Kochman, Stanley O. The Symplectic Cobordism Ring II. 170 pp. Memoirs of the American Mathematical Society. #271. 1982 (Softcover) Very good condition. MATH13946 $6.00
  • On Deformations of Complex Analytic Structures. 217 pp. Typescript text. Produced by Princeton Military Contracts. (1957) ( Softcover ) Very good condition but for a few ink spots on the edges. ( The subject concerns mathematical structures ) MATH13449 $55.00
  • On Deformations of Complex Analytic Structures. 217 pp. Typescript text. Produced by Princeton Military Contracts. (1957) ( Softcover ) Very good condition but for a few ink spots on the edges. ( The subject concerns mathematical structures ) MATH13450 $55.00

62. A Curva De Koch
Translate this page A curva de koch foi apresentada pelo matemático sueco helge von koch, em 1904,construindo-aa partir de um segmento de recta. Construção da Curva de von
http://www.educ.fc.ul.pt/icm/icm99/icm14/koch.htm
Floco de Neve e Curva de von Koch A curva de Koch foi apresentada pelo matemático sueco Helge von Koch, em 1904, construindo-a a partir de um segmento de recta. Construção da Curva de von Koch:
  • Divide-se esse segmento em três partes iguais. Substitui-se o segmento médio por dois segmentos iguais, de modo a que, o segmento e médio e os dois novos segmentos formem um triângulo equilátero. Obteve-se uma linha poligonal com quatro segmentos de comprimento igual. Posteriormente, repetem-se os passos para cada um dos segmentos obtidos.
  • Obtém-se assim, no limite de iterações, uma curva que pode ser considerada como um modelo simplificado de uma costa, no entanto, quando comparada com a última, esta curva tem uma irregularidade demasiado sistemática. Tal como uma costa, a curva de von Koch tem um comprimento infinito. Esta curva deu origem a um outro fractal, conhecido como floco de neve ou ilha de von Koch (modelo rudimentar da costa de uma ilha e muito semelhante a um floco de neve). Este último modelo é construído partindo de um triângulo equilátero.

    63. Forschungsbericht
    Translate this page Karch helge, in den Forschungsschwerpunkten (und Projekten auf Basis der koch Gunter Fritz, in den Drittmittelprojekten. Vergleich von Effekten einer
    http://www.zv.uni-wuerzburg.de/forschungsbericht/FOBE-akt/prd-K.htm

    Personenindex
    Schlagwortindex Startseite: Forschungsbericht
    Personenindex K
    Kackstätter Uwe in den Drittmittelprojekten: Bodenphysikalische, geochemische und tonmineralogische Untersuchungen an ausgewählten nordbayerischen Tonlagerstätten (BayForrest-Projekt F-22(F)) Diffusionsverhalten organischer und anorganischer Modellsubstanzen in ausgewählten geologischen Einheiten (BayForrest-Projekt F-22(2F) Kacprzak Sylwia in den Forschungsschwerpunkten (und Projekten auf Basis der Grundausstattung): Die rasante Entwicklung quantenchemischer Methoden erlaubt zunehmend komplexere Anwendungenin prakti... Kagerhuber Ulrike in den Forschungsschwerpunkten (und Projekten auf Basis der Grundausstattung): Apoptose in Maus-Fibroblasten... in den Drittmittelprojekten: Apoptose in Maus-Fibroblasten Kahle Erhart in den Forschungsschwerpunkten (und Projekten auf Basis der Grundausstattung): Forschungsschwerpunkte1. Editionen medizinischer Standardwerke der Spätantike, des Mittelalters und... Kaiser Dorkas in den Forschungsschwerpunkten (und Projekten auf Basis der Grundausstattung): BIOTA West Africa in den Drittmittelprojekten: Arthropoden als Ökosystem Ingenieure: Der Einfluß von Ameisen und Termiten auf Bodeneigenschaften und Vegetation Kaiser Udo in den Drittmittelprojekten: Verbundübergreifende Reanalysen zu Prädiktoren des Patientenschulungserfolges und Entwicklung von allgemeinen Empfehlungen zur Evaluation von Patientenschulungen (Projekt QF) Verbundübergreifende Reanalysen zu Prädiktoren des Patientenschulungserfolges und Entwicklung von allgemeinen Empfehlungen zur Evaluation von Patientenschulungen (Projekt QF) Kaiser Werner

    64. EROSION CONTROL | FEATURE ARTICLE - The Fractal Nature Of Erosion
    Discovered by mathematician helge von koch in 1904, this snowflake is a primeexample of the fractal geometry related to the problem of measuring Great
    http://www.forester.net/ecm_0205_fractal.html
    An abstract mathematical concept might eventually help create erosion-prediction models. By John M. Fuhrmann fractal predict erosion as well. It is time for this groundbreaking research to graduate from the laboratory to the field. The recent findings open a warehouse of mathematical tools to the erosion community. Fractal mathematics fills volumes of dusty books, and the critical discovery by Yonathan Shapir, Ph.D., and his colleagues pierces the membrane between physical erosion and years of complicated mathematical theory. The future of erosion research promises to be an exciting one as the Rochester laboratories pass the baton to geologists, engineers, and landscape architects. Fractals, Fractals Everywhere

    65. Lindenmayer Fractals - Generating Fractals - Examples
    It is named after helge von koch, who described it in 1904. Also known as thekoch curve. It can also be called the koch island, but this can be confused
    http://www.math.ubc.ca/~cass/courses/m308-03b/projects-03b/skinner/ex-generating
    Generating Fractals - Examples
    In the examples below, clicking on the image will open a PostScript slide show of the consecutive iterations of that particular fractal. The PostScript files are huge, so they have been placed in ZIP files. When you click on an image, choose to save the ZIP file to disk. Once it has completed, choose to open the file, and then double-click the PostScript file contained in the ZIP file to run the slide show Note that if the first iteration is blank, it is not part of the slide show The first iteration is blank if the initial axiom contains no movement characters; that is, if the turtle doesn't move during translation of the axiom into an image.
    Koch Snowflake
    Initial Axiom F++F++F Transformation Rules Initial Heading (degrees) Rotation Unit (degrees) One of the best-known Lindenmayer fractals, the Koch snowflake is produced using quite a simple Lindenmayer grammar, as fractals go. It is named after Helge von Koch, who described it in 1904. Also known as the Koch curve . It can also be called the Koch island , but this can be confused with the quadratic Koch island below.

    66. Lévy Dragon
    In this he was motivated by the earlier work of helge von koch and the koch curve.Among several of the properties that Lévy observed was that the plane can
    http://ecademy.agnesscott.edu/~lriddle/ifs/levy/levy.htm
    Iterated Function
    Systems
    Larry Riddle Home Sierpinski Gasket Sierpinski Carpet Sierpinski Pentagon ...
    Paul Levy

    Construction
    Animation
    Start with an isoceles right triangle . Replace this triangle with two isoceles right triangles so that the hypotenuse of each new triangle lies on one of the equal sides of the old triangle. Place each new triangle so that it points out from the original triangle to get . For the next step, repeat the process on each of the triangles that make up , as illustrated in the figure below. For each new iteration, replace each triangle in Lk by two isoceles right triangles. The Levy dragon is the limiting set of this iterative construction. Notice that at each iteration, the sides of each triangle in Lk are scaled by a factor 1/sqrt(2) [see IFS discussion below], so that the area is scaled by 1/2. But each triangle in Lk Suppose that the original isoceles right triangle is placed so that its hypotenuse is the unit interval on the x-axis and the opposite corner is at (1/2, 1/2). Then each leg is equal to . This means that we must scale the triangle by the factor r = to get each of the new triangles for x and y directions. This yields the following IFS

    67. Perfect & Pathological Math
    Biography Georg Cantor, helge von koch, Waclaw Sierpinski, David Hilbert.Week Three · Definitions of dimension · Topological dimension versus fractal
    http://www.moscholars.org/curriculum/Perfect and Pathological Mathematics.htm
    Teachers Perfect and Pathological Mathematics
    I. Course description
    Quick! When is a coffee cup equivalent to a donut? Is it possible for a shape to have infinite surface area and finite area? How do you know? In this class, we will meet the fringe elements of the world of mathematics: we'll encounter well-behaved and mathematically beautiful ideas and theorems, and we'll spend a lot of time with the misbehaving miscreants that have stymied long-held mathematical assumptions. We'll not only study the functions, curves and ideas that have reassured and rocked the world of math; we'll also study the means by which a theorem, proposition or lemma becomes mathematically valid. In addition, we'll explore the lives of the movers and shakers of the history of math and develop some ideas about the evolving nature of mathematics. Was it invented or discovered? What are the most pressing mathematical questions of our time? II. Instructor's educational preparation and current employment
    III. Rationale for inclusion in a program for gifted students

    68. Combes: Sur Un Théorème De H. Von Koch
    et en se bornant aux solutions de croissance pas trop rapide, helge von koch (1 certaines constantes et 03C8 une fonction ~1 1 (1) helge von koch.
    http://www.numdam.org/numdam-bin/item?id=AFST_1962_4_26__99_0

    69. Von Koch: Remarques Sur Quelques Séries De Polynomes
    269 REMARQUES SUR QUELQUES SÉRIES DE POLYNOMES; Par M. helge von koch.Désignant par y un point du plan de la variable complexe, on sait que Inéquation
    http://www.numdam.org/numdam-bin/item?id=BSMF_1906__34__269_1

    70. Helge Von Koch
    von koch, militare di carriera, e di Agathe Henriette Wrede, helge von koch
    http://www.matmatprof.it/filosofia_e_dintorni/matematici/helge_von_koch.htm
    INDEX CERCA NEL SITO FORUM
    Luogo di discussione Filosofica MAILING LIST CHAT
    vota www.matmatprof.it
    nella categoria Cultura NEWS Libri su Nietzsche
    Sito su Nietzsche

    Pubblicazioni

    Leopardi filosofo
    GUIDA RAPIDA Scienza
    Medicina

    Salute
    Filosofia ...
    Letteratura
    APPROFONDIMENTI Biblioteca
    Biografie
    Il Pensiero Donne filosofe ... Filosofi matematici MINI CHAT /n nickname SITI PARTNER Portale di filosofia www.filosofico.net www.socrate.tk Festival della Filosofia ... Filosofia Politica IPSE DIXIT Helge von Koch Nacque a Stoccolma il 25 gennaio 1870; figlio di Richert Vogt von Koch, militare di carriera, e di Agathe Henriette Wrede, Helge Von Koch frequentò una buona scuola superiore di Stoccolma, completando i suoi studi nel 1887, quindi si inscrisse all'Università di Stoccolma. Pubblicò numerosi lavori di matematica, riguardanti i sistemi lineari e le equazioni differenziali, per i quali fu molto apprezzato, e, infine, nel 1911, divenne professore di matematica all'Università di Stoccolma. Von Koch è famoso per la curva che porta il suo nome e che apparve nel suo lavoro Une méthode géométrique élémentaire pour l'étude de certaines questions de la théorie des courbes planes , pubblicato nel 1906. Morì sempre a Danderyd, presso Stoccolma l'11 Marzo 1924.

    71. Koch's Curve
    of a simple fractal image is koch s curve, named after Swedish helge von koch It is also possible to create a closed shape (for example koch s
    http://www.cs.auc.dk/~normark/eciu-recursion/html/recit-note-koch.html
    Page 14 : 41 Recursion * Introduction Introduction About the authors * Everyday recursion Everyday recursion Recursive visual effects Physical structures: A staircase Biological processes: Strawberry plants (1) Biological processes: Strawberry plants (2) 'Recursion' in dictionaries * Fractals and Curves Fractals Cantor's set Koch's Curve Fractal Essentials Fractals in a cultural perspective Settlement of Bamileke The Ba-ila settlement Hilbert Curves (1) Hilbert Curves (2) Building Hilbert Curves of order 1 Building Hilbert Curves of order 2 Building Hilbert Curves of order 3 Building Hilbert Curves of order 4 A program making Hilbert Curves * Recursive algorithms and recursive processes The Eight Queens Problem (1) The Eight Queens Problem (2) Backtracking and the Eight Queens Problem A solution to the Eight Queens Problem * Recursive data types Recursive datatypes Linear lists Binary trees * The implementation of recursion The implementation of recursive functions Implementation of recursion Stack development of normal recursion An alternative recursive definition of fak Stack development of the alternative fak A memory efficient implementation Koch's Curve An example of a simple fractal image is Koch's curve, named after Swedish Helge von Koch

    72. The Von Koch Curve
    This curve was constructed by the swedish mathematician helge von koch (1870 1924) as an example of a continuous curve in the plane without a tangent at
    http://www.nada.kth.se/~berg/vonkoch.html
    The von Koch Curve
    A line is divided into three equal parts, on the middle third an equilateral triangle is drawn whose base is removed. If you as starting line choose the sides of an equilateral triangle, in the limit you get the von Koch snowflake curve. This curve was constructed by the swedish mathematician Helge von Koch (1870 - 1924) as an example of a continuous curve in the plane without a tangent at every point. The same curve is also an example of a nowhere differentiable continuous function.

    73. Nat' Academies Press, Prime Obsession: Bernhard Riemann And The Greatest Unsolve
    koch, helge von, 237, 240, 242, 244245, 381, 397. König, Samuel, 370. Kronecker,Leopold, 135, 170, 185, 188, 376-377. Kulik, Yakov, 153
    http://www.nap.edu/openbook/0309085497/html/414.html
    Read more than 3,000 books online FREE! More than 900 PDFs now available for sale HOME ABOUT NAP CONTACT NAP HELP ... ORDERING INFO Items in cart [0] TRY OUR SPECIAL DISCOVERY ENGINE Questions? Call 888-624-8373 Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics (2003)
    Joseph Henry Press ( JHP
    Find More Like

    This Book
    Research ...
    Dashboard
    NEW!
    BUY This Book

    CHAPTER SELECTOR:
    Openbook Linked Table of Contents Front Matter, pp. i-xvi Part I: The Prime Number Theorem, pp. 1-2 1. Card Trick, pp. 3-18 2. The Soil, the Crop, pp. 19-31 3. The Prime Number Theorem, pp. 32-47 4. On the Shoulders of Giants, pp. 48-62 5. Riemann's Zeta Function, pp. 63-81 6. The Great Fusion, pp. 82-98 7. The Golden Key, and an Improved Prime Number Theorem, pp. 99-117 8. Not Altogether Unworthy, pp. 118-136 9. Domain Stretching, pp. 137-150 10. A Proof and a Turning Point, pp. 151-166 Part II: The Riemann Hypothesis, pp. 167-168 11. Nine Zulu Queens Ruled China, pp. 169-183 12. Hilber's Eighth Problem, pp. 184-200 13. The Argument Ant and the Value Ant, pp. 201-222

    74. Xah: Special Plane Curves: Naming And Classification Of Curves
    Famous fractals includes the helge von koch s koch snowflake , David Hilbert sspacingfilling curve, William Gosper s flowsnake , Benoit Mandelbrot s
    http://www.xahlee.org/SpecialPlaneCurves_dir/Intro_dir/familyIndex.html
    If you spend more than 30 minutes on this site, please send $1 to me. Go to http://paypal.com/ and make a payment to xah@xahlee.org. Or send to: P. O. Box 390595, Mountain View, CA 94042-0290, USA. ★ Back to Table of Contents
    Naming and Classification of Curves
    Classification of Curves How Curves are Named Other Constructions and Definitions Curve Family Tree ... Related Web Sites
    Classification of Curves
    There are many ways to classify curves. One way is to determine whether a curve is the graph of some polynomial equation p[x,y]==0. The graph of a polynomial equation are called algebraic curves.. Algebraic curve are assigned an order . The order of an algebraic curve is the degree of the polynomial. For example, line (a x + b y + c == 0); circle ((x+h)^2 + (y+k)^2 -r^2 == 0), or the deltoid ((x^2+y^2)^2 - 8 a x (x^2 - 3 y^2) + 18 a^2 (x^2 + y^2) - 27 a^4 == 0), are algebraic curves. Curves may be easy to trace but are not algebraic. For example, no polynomial's graph can be any of cycloid equiangular spiral , or quadratrix of Hippias . Algebraic curves with degree greater than 2 are called higher plane curves. Non-algebraic curves are called transcendental curves. To determine whether a curve is algebraic requires graduate level math knowledge, and is beyond this project's scope. Here we will group curves by tracing methods.

    75. Chaos Theory: A Brief Introduction
    One mathematician, helge von koch, captured this idea in a mathematical constructioncalled the koch curve. To create a koch curve, imagine an equilateral
    http://www.imho.com/grae/chaos/chaos.html
    Chaos Theory: A Brief Introduction
    What exactly is chaos? The name "chaos theory" comes from the fact that the systems that the theory describes are apparently disordered, but chaos theory is really about finding the underlying order in apparently random data. When was chaos first discovered? The first true experimenter in chaos was a meteorologist, named Edward Lorenz. In 1960, he was working on the problem of weather prediction. He had a computer set up, with a set of twelve equations to model the weather. It didn't predict the weather itself. However this computer program did theoretically predict what the weather might be. One day in 1961, he wanted to see a particular sequence again. To save time, he started in the middle of the sequence, instead of the beginning. He entered the number off his printout and left to let it run. When he came back an hour later, the sequence had evolved differently. Instead of the same pattern as before, it diverged from the pattern, ending up wildly different from the original. (See figure 1.) Eventually he figured out what happened. The computer stored the numbers to six decimal places in its memory. To save paper, he only had it print out three decimal places. In the original sequence, the number was .506127, and he had only typed the first three digits, .506.
    By all conventional ideas of the time, it should have worked. He should have gotten a sequence very close to the original sequence. A scientist considers himself lucky if he can get measurements with accuracy to three decimal places. Surely the fourth and fifth, impossible to measure using reasonable methods, can't have a huge effect on the outcome of the experiment. Lorenz proved this idea wrong.

    76. Documento Sin Título
    Translate this page Uno de los primeros fractales fue definico por Niels helge von koch en 1904.Este objeto es conocido como curva de koch. Esta curva se trataba de una curva
    http://www.uoc.edu/mosaic/practicas/MatematicasII/asanchezfo_PAC1/fractales/web/
    FRACTAL DE KOCH Uno de los primeros fractales fue definico por Niels Helge von Koch en 1904. Este objeto es conocido como curva de Koch . Esta curva se trataba de una curva matemáticamente "imposible" porque de ella se deducen estas tres características:
    • N
    Supongamos que la longitud del segmento sea la unidad: L=1. Copo de nieve de Koch P

    77. Fractal Curves
    In 1904, Swedish mathematician helge von koch defined a continuous curve thatcould not be differentiated. It was just another example of a discovery first
    http://coco.ccu.uniovi.es/malva/sketchbook/lssketchbook/examples/fractal/fractal

    78. Capítulo 1 - Objetos Fractales. Autosemejanza
    Translate this page La curva de helge von koch. Inspirados por el hallazgo de Weierstrass, Este es el caso del matemático suizo helge von koch (1870-1924) “On a Continuous
    http://coco.ccu.uniovi.es/geofractal/capitulos/01/01-09.shtm

    79. STEFAN STENUDD - KAOS - Nyordning För Oordningen - - - - -
    Fraktaler av koch. helge von koch (18701924) doktorerade i Uppsala 1892, arbetadesom docent vid Stockholms Högskola till 1905, sedan som professor på
    http://www.stenudd.se/myter/kaos.htm

    80. Anecdotario Matemático
    Translate this page John von Neumann era un genio matemático que también estuvo dotado de este de curva de koch, en honor de helge von koch que la describió originalmente
    http://www-etsi2.ugr.es/profesores/jmaroza/anecdotario/anecdotario-c.htm
    (v. Integrales) Carl Friedrich Gauss Brighter than a Thousand Suns Leonhard Euler A Memoir of Zerah Colburn: written by himself. . . with his peculiar methods of calculation The Theory of Canonical Matrices Transactions pi (v.) Cantor Georg Ferdinand Ludwig Philipp Cantor (1845-1918) n. en San Petersburgo. Trabajando a sugerencia de Heinrich Eduard Heine sobre un problema surgido de trabajos de Fourier , hizo notables descubrimientos acerca de la estructura de la recta real y de los números transfinitos, ideas que, según estaba convencido, le habían sido comunicadas directamente por Dios. Su aritmética transfinita encontró mucho rechazo: Henri Poincaré dijo que la teoría era "una enfermedad" de la que algún día llegarían las matemáticas a curarse; Hermann Weyl se refirió a la jerarquía de alephs establecida por Cantor como "niebla en la niebla"; Leopold Kronecker , uno de los maestros de Cantor, le calificó de "charlatán científico", "renegado" y "corruptor de la juventud". El propio Cantor se resistió al principio a aceptar la existencia de tales números. La idea de infinito completo se venía rechazando desde , a causa de las paradojas que planteaba.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 101    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

    free hit counter