Nota sobre el teorema dels quatre colors Guthriea capensis i Erica Guthriei En les coloracions a què fa referència el problema de Gurthrie, regions no frontereres es poden acolorir amb el mateix color i regions que tenen un únic punt en comú també. Amb aquestes condicions, els mapes de les figures 1(a) i 1(b) es poden acolorir amb només quatre colors, com mostren les figures 1(b) i 2 (b). A més, aquests són exemples de mapes que no es poden acolorir amb menys de quatre colors. El que resulta sorprenent és que, com afirmava Guthrie, per complicat que sigui un mapa es pugui pintar amb només quatre colors. El problema consistia en demostrar que quatre colors són suficients per a qualsevol mapa o bé en trobar-ne un que en requereixi cinc o més. La major part de demostracions errònies es basen en el convenciment que el nombre mínim de colors que cal per pintar un mapa és el màxim nombre de regions dos a dos adjacents. Després es prova que en cap mapa no hi pot haver cinc regions tals que cadascuna sigui adjacent a les altres quatre, un resultat que ja era conegut per De Morgan. La conclusió és immediata: quatre colors són suficients per a qualsevol mapa. Malauradament, la hipòtesi de partida és falsa, com prova el mapa de la figura 3. En aquest mapa el nombre màxim de regions mútuament adjacents és tres, però requereix quatre colors, tres per a les regions de la corona i un altre per a la central. Bibliografia Kenneth Appel and Wolfgang Haken: La solución del problema del mapa de cuatro colores | |
|