Geometry.Net - the online learning center
Home  - Scientists - Faltings Gerd
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 97    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Faltings Gerd:     more books (16)
  1. Rational Points: Seminar Bonn/Wuppertal 1983/84 (Aspects of Mathematics)
  2. Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127) by Gerd Faltings, 1992-02-19
  3. Degeneration of Abelian Varieties (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics) by Gerd Faltings, Ching-Li Chai, 2010-11-02
  4. Leibnizpreisträger: Jürgen Habermas, Christiane Nüsslein-Volhard, Gerd Faltings, Gottfried-Wilhelm-Leibniz-Preis, Berthold Beitz (German Edition)
  5. Mitglied Der Nordrhein-Westfälischen Akademie Der Wissenschaften: Ilya Prigogine, Christiane Nüsslein-Volhard, Kurt Alder, Gerd Faltings (German Edition)
  6. Hochschullehrer (Bergische Universität Wuppertal): Gerd Faltings, Karl-Heinz Petzinka, Johannes Harder, Lew Sinowjewitsch Kopelew, Peter Dienel (German Edition)
  7. University of Wuppertal: University of Wuppertal Faculty, Walter Thiel, Gerd Faltings, Karl Albert
  8. Gerd Faltings Proves Mordell's Conjecture (1983): An entry from Gale's <i>Science and Its Times</i> by Brooke Coates, 2001
  9. Gerd Faltings: An entry from Gale's <i>Science and Its Times</i> by Adrienne Wilmoth Lerner, 2001
  10. Träger Der Fields-Medaille: Gerd Faltings, Alexander Grothendieck, Grigori Jakowlewitsch Perelman, Jean-Pierre Serre, Laurent Schwartz (German Edition)
  11. Rational points: Seminar Bonn / Wuppertal 1983/84 (Aspects of mathematics) by Gerd Faltings, 1986
  12. Inventiones Mathematicae: Vol. 159, Fasc. 3, 2005 by Jean-Michel; Gerd Faltings (eds.) Bismut, 2005
  13. Inventiones Mathematicae: Vol. 160, Fasc. 1, 2005 by Jean-Michel; Gerd Faltings (eds.) Bismut, 2005
  14. Inventiones Mathematicae: Vol. 159, Fasc. 2, 2005 by Jean-Michel; Gerd Faltings (eds.) Bismut, 2005

61. Papers
Talk, MSRI; faltings, gerd. The product theorem for projective spaces. Talk, MSRI, 4/26/1993; faltings, gerd. On Drinfel d conjecture
http://www.math.fsu.edu/~aluffi/mainhtmls/compr.html
Filed papers, and notes from talks
  • Preprint, 1984
  • Abbena, Elsa; Grassi, Antonella Hermitian left invariant metrics on complex Lie groups and cosymplectic Hermitian manifolds
  • Preprint
  • Aberbach, Ian; Huneke, Craig A theorem of Briancon-Skoda type for regular local rings containing a field
  • Ch. 2 in "Geometric Invariance in Computer Vision"
  • Abhyankar, Shreeram Invariant Theory and Enumerative Combinatorics of Young Tableaux
  • Ch. 2 in "Algebraic Geometry and its Applications"
  • Abhyankar, Shreeram Square-root Parametrization of Plane Curves
  • Current Science, 63, 5, 9/1992
  • Abhyankar, Shreeram Resolution of singularities in various characteristics
  • Discrete Applied Math. 31 (1991) 81-96
  • Abhyankar, Shreeram; Chandrasekar, Srinivasan; Chandru, Vijaya Intersection of algebraic space curves
  • J. Reine Angew. Math. 276 (1975) 149-166
  • Abhyankar, Shreeram; Moh Tzuong-tsieng Embeddings of the line in the plane
  • Preprint, 1995
  • Abkulut, S. Lectures on Seiberg-Witten Invariants
  • Talk, Univ. of Chicago, 5/28/97
  • Abramovich, Dan Stable reduction for fibred surfaces
  • Lecture notes
  • Abramovich, Dan

62. Visiting Mathematicians 2001/2002
faltings, gerd GAN, WeeTeck GRIESEMER, Marcel GROSS, Mark GULLIVER, Robert gerd faltings (Max Planck Institute of Mathematics, Germany). 2001/12
http://math.cts.nthu.edu.tw/Mathematics/english/visitor/visitor2001.html
Visiting Mathematicians August 2001 - July 2002 ABHYANKAR, Shreeram
ANGENENT, Sigurd

BAHRI, Abbas

BAO, Gang
...
CHEN, Shuxing

CHEN, Zhangxin
CHEN, Zhiming

CHIPOT, Michel

CHOU, So-Hsiang

CHOW, Ben
...
JI, Min
KANG, Seok Jin KEYFITZ, Barbara Lee KNOPF, Dan KURGANOV, Alexander KWAK, Do Young LAMKEN, Esther LAU, Ka-Sing LEE, Tzong-Yow LEE, Yi-Jen ... LEE, Yng-Ing LEE, Yuan-Pin LEUNG, Conan Naichung LEUNG, Man-Chun LEVI, Mark LI, Hailiang ... TILOUINE, Jacques TSAI, Tai-Peng TSUI, Mao-Pei URBAN, Eric WALDSCHMIDT, Michel WAN, Da-Qing WANG, Chern-Shuh WANG, Jenn-Nan WANG, Jiaping WANG, Li-He WANG, Mu-Tao ... YANG, Tzi-Sheng YAU, Horng-Tzer YI, Yingfei YU, Chia-Fu YU, Jing YU, Jiu-Kang

63. School Of Mathematics - Short Term Visitors
faltings, gerd, Oct 3, 2005 Oct 22, 2005. Illusie, Luc, Oct 5, 2005 - Oct 21, 2005. Schwermer, Joachim, Nov 2, 2005 - Nov 30, 2005
http://www.math.ias.edu/pages/people/members/short-term-visitors.php
  • Home Activities
    Short-term Visitors
    Visitor Dates of Visit Office Extension Home Telephone Email Dvir, Zeev Sep 4, 2005 - Sep 17, 2005 F-119 369 Olden Lane
    Princeton,NJ 08540
    Saxl, Jan Sep 6, 2005 - Sep 23, 2005 S-005 47 Flexner Lane
    Princeton,NJ 08540
    Murty, M. Ram Sep 26, 2005 - Oct 27, 2005 D-107 48 Flexner Lane
    Princeton,NJ 08540
    Faltings, Gerd Oct 3, 2005 - Oct 22, 2005
    Illusie, Luc Oct 5, 2005 - Oct 21, 2005
    Milman, Vitali Oct 17, 2005 - Oct 29, 2005
    Raz, Ran Oct 25, 2005 - Nov 1, 2005
    Schwermer, Joachim Nov 2, 2005 - Nov 30, 2005 Lackenby, Marc Nov 5, 2005 - Nov 19, 2005 Zelmanov, Efim Nov 12, 2005 - Nov 17, 2005 Nikolov, Nikolay Nov 13, 2005 - Nov 19, 2005 Mastropietro, Vieri Nov 27, 2005 - Dec 23, 2005 Berkovich, Vladimir Jan 1, 2006 - Jan 31, 2006 Shalev, Aner Feb 1, 2006 - Mar 1, 2006 Burger, Marc Mar 1, 2006 - Mar 31, 2006 Ratner, Marina Mar 26, 2006 - Apr 1, 2006 Shahidi, Freydoon Apr 16, 2006 - Apr 30, 2006 Princeton,NJ 08540
    Thursday, September 1st
    Institute for Advanced Study • webmaster@math.ias.edu

64. School Of Mathematics - Short Term Visitors
faltings, gerd, Oct 3, 2005 Oct 22, 2005. Burger, Marc, Mar 1, 2006 - Mar 31, 2006. Murty, M. Ram, Sep 15, 2005 - Oct 30, 2005. Shahidi, Freydoon, Apr 16,
http://www.math.ias.edu/pages/people/members/short-term-visitors.php?order=lphon

65. Article About "List Of Mathematical Topics (D-F)" In The English Wikipedia On 24
Factorization Falling factorial faltings, gerd Farey sequence Fast Fourier Transform Fast Fourier transform Fatou s lemma Fatou,
http://fixedreference.org/en/20040424/wikipedia/List_of_mathematical_topics_(D-F
The List of mathematical topics (D-F) reference article from the English Wikipedia on 24-Apr-2004 (provided by Fixed Reference : snapshots of Wikipedia from wikipedia.org)
List of mathematical topics (D-F)
List of mathematical topics
A-C
D-F G-I ... Mathematicians
D
D-branes d'Aguillon, Francois d'Alembert, Jean le Rond D'Alembert's principle ... D'Alembertian operator Dandelin, Germinal Pierre Dandelin spheres Danielson, G.C Dantzig, David van Dantzig, George Darboux integral Darcy-Weisbach equation Data compression Data Encryption Standard Data set ... De Morgan's laws Denjoy Integral Denominator Denormal number Denotational semantics Dense ... Dirichlet's unit theorem Discontinuity set Discrete cosine transform Discrete Fourier transform Discrete group Discrete Hankel transform ... Discrete space Discrete valuation Discriminant of a polynomial Disjoint sets Disjoint union Disjunctive normal form ... Donaldson Donaldson, Simon Dot product Dot-decimal notation Douady, Adrien Double counting Double integral Douglas, Jesse Dragon curve Drinfeld, Vladimir Dual (category theory) Dual group Dual numbers Dual polyhedron ... Dudley, Underwood

66. Golem.de - Lexikon
Translate this page Dieser Artikel basiert auf dem Artikel gerd faltings aus der freien Enzyklopädie Wikipedia und steht gerd faltings ist bislang einer von zwei deutschen,
http://lexikon.golem.de/Gerd_Faltings
News Forum Archiv Markt ... Impressum Lexikon-Suche Lizenz Dieser Artikel basiert auf dem Artikel Gerd Faltings aus der freien Enzyklopädie Wikipedia und steht unter der GNU Lizenz für freie Dokumentation . In der Wikipedia ist eine Liste der Autoren verfügbar, dort kann man den Artikel bearbeiten Letzte Meldungen Neue Version von Magix Music Maker Test: PlayStation Portable - Die besten Spiele zum Start ... Originalartikel
Lexikon: Gerd Faltings
Gerd Faltings 28. Juli in Gelsenkirchen ) ist ein deutscher Physiker und Mathematiker Fields-Medaille Faltings studierte Mathematik und Physik an der (1972-1978), Diplom und Promotion (1978) , die Habilitation erfolgte (1981). Er wurde dann Professor an der (1982-1984) und danach an der Seit 1995 ist er Direktor und Wissenschaftliches Mitglied am in Bonn. Gerd Faltings ist bislang einer von zwei deutschen, die die Fields-Medaille erhielten. Er wurde Mordellschen Vermutung und seine Arbeiten in der algebraischen Geometrie ausgezeichnet. Seine Hauptarbeitsgebiete sind Diophantische Gleichungen
Weitere Ehrungen

Personendaten
NAME Faltings, Gerd

67. Integrality Of Tate-cycles -- Faltings 94 (21): 11142 -- Proceedings Of The Nati
gerd faltings. MaxPlanck-Institut für Mathematik, Gottfried-Claren-Strasse 26, 53225 Bonn, Germany. ABSTRACT ARTICLE REFERENCES
http://www.pnas.org/cgi/content/full/94/21/11142
This Article Abstract Full Text (PDF) Alert me when this article is cited ... Alert me if a correction is posted Services Similar articles in this journal Similar articles in ISI Web of Science Similar articles in PubMed Alert me to new issues of the journal ... Download to citation manager PubMed PubMed Citation Articles by Faltings, G. Proc. Natl. Acad. Sci. USA
Vol. 94, pp. 11142-11142, October 1997
Colloquium Paper
This paper was presented at a colloquium entitled "Elliptic Curves and Modular Forms," organized by Barry Mazur and Karl Rubin, held March 15-17, 1996, at the National Academy of Sciences in Washington, DC.
Integrality of Tate-cycles
Gerd Faltings
ABSTRACT
ARTICLE
REFERENCES
ABSTRACT We explain a technical result about p -adic cohomology and apply it to the study of Shimura varieties. The technical result applies to algebraic varieties with torsion-free cohomology, but for simplicity we only treat abelian varieties. ARTICLE Suppose A is an abelian variety over V , a p -adic discrete valuation ring with perfect residue field k . Let V W k V denote the maximal unramified subring

68. Integrality Of Tate-cycles -- Faltings 94 (21): 11142 -- Proceedings Of The Nati
gerd faltings. MaxPlanck-Institut für Mathematik, Gottfried-Claren-Strasse 26, 53225 Bonn, Germany. We explain a technical result about p-adic cohomology
http://www.pnas.org/cgi/content/abstract/94/21/11142
This Article Full Text Full Text (PDF) Alert me when this article is cited ... Alert me if a correction is posted Services Similar articles in this journal Similar articles in ISI Web of Science Similar articles in PubMed Alert me to new issues of the journal ... Download to citation manager PubMed PubMed Citation Articles by Faltings, G. Proc. Natl. Acad. Sci. USA
Vol. 94, pp. 11142-11142, October 1997
Colloquium Paper
This paper was presented at a colloquium entitled "Elliptic Curves and Modular Forms," organized by Barry Mazur and Karl Rubin, held March 15-17, 1996, at the National Academy of Sciences in Washington, DC.
Integrality of Tate-cycles
Gerd Faltings We explain a technical result about p -adic cohomology and apply it to the study of Shimura varieties. The technical result applies to algebraic varieties with torsion-free cohomology, but for simplicity we only treat abelian varieties.
Current Issue
Archives Online Submission Info for Authors ... Site Map

69. Avetisyan, Karen Yerevan State University ARMENIA Avetkaren@ysu.am
faltings, gerd. MaxPlanck Instituts für Mathematik. Vivatsgasse 7. 53111 Bonn. GERMANY. gerd@mpim-bonn-mpg.de. Gindikin, Simon
http://www.math.uio.no/abel/participants.html
Avetisyan, Karen Yerevan State University ARMENIA avetkaren@ysu.am Gaiko, Valery Belarus State University BELARUS vlgk@cit.org.by Lemaire, Luc Universite Libre de Bruxelles CP 218 Campus Plaine Bd du Triomphe BE-1050 Bruxelles BELGIUM llemaire@ulb.ac.be Van den Bergh, Michel Limburgs Universitair Centrum Dept. WNI Universitaire Campus 3590 Diepenbeek BELGIUM vdbergh@luc.ac.be Van Oystaeyen, Fred BELGIUM francine.schoeters@ua.ac.be Vidunas, Raimundas Antwerp University Universiteitsplein 1 2610 Wilrijk BELGIUM vidunas@uia.ua.ac.be Esteves, Eduardo IMPA 12 Totman Drive, apt. 2 Woburn MA 01801 BRAZIL esteves@math.mit.edu Hefez, Abramo UFF BRAZIL hefez@mat.uff.br Vainsencher, Israel UFPE Departamento de Matematica UFPE Cidade Universitaria 50740-540 Recife BRASIL BRAZIL israel@dmat.ufpe.br Kapranov, Mikhail University of Toronto Department of Mathematics Toronto, Ontario M5S 3G3 CANADA kapranov@math.toronto.edu Andersen, Henning Haahr Aarhus University Matematisk Institut Aarhus Universitet DK 8000 Aarhus C DENMARK mathha@imf.au.dk Branner, Bodil Technical University of Denmark Department of Mathematics Building 303 DK-2800 Kongens Lyngby DENMARK B.Branner@mat.dtu.dk

70. L. Adleman/M. Huang Primality Testing And Abelian Varieties Over
gerd faltings Lectures on the arithmetic RiemannRoch theorem. 4784 gerd faltings Recent progress in diophantine geometry. 4727 Casacuberta/Castellet
http://felix.unife.it/Root/d-Mathematics/d-Number-theory/b-Arithmetic-algebraic-
L. Adleman/M. Huang: Primality testing and abelian varieties over finite fields. SLN Math. 1512 (1992). 5375 G. Belyi: On Galois extensions of the maximal cyclotomic field. Math. USSR Izvestiya 14 (1980), 247-256. Massimo Bertolini/Giuseppe Canuto: La congettura di Shimura-Taniyama-Weil. Boll. UMI 10-A (1996), 213-247. This expository paper outlines the proof of the conjecture of Shimura-Taniyama-Weil for semistable elliptic curves by Wiles and illustrates some consequences of this work on Fermat's last theorem and the conjecture of Birch and Swinnerton-Dyer. 8336 Amnon Besser: Euler systems for higher-weight modular forms. Internet 1996, 6p. G. Billing/K. Mahler: On exceptional points on cubic curves. J. London Math. Soc. 15 (1940), 32-43. The authors show that on an elliptic curve defined over Q there don't exist rational points of order 11. 1990 S. Bloch: The proof of the Mordell conjecture. Math. Intell. 6/2 (1984), 41-47. Enrico Bombieri: The Mordell conjecture revisited. Annali di Pisa 17 (1990), 615-640. 3453 A. Brumer/O. McGuiness: The behaviour of the Mordell-Weil group of elliptic curves. Bull. AMS 23 (1990), 375-382. A. Buium: Differential algebra and diophantine geometry. Hermann 1994, 190p. 2-705-66226-X. FFR 130. "The book develops differential algebraic geometry, a geometry in which local theory is provided by classical differential algebra ... This theory has intriguing applications to diophantine geometry: the author gives new proofs of the conjectures of Lang and Mordell over function fields of characteristic zero." (EMS Newsletter). Fabrizio Catanese (ed.): Arithmetic geometry. Symp. Math. 37 (1997), 300p. 2681 J.S. Chahal: Topics in number theory. Plenum Press 1988. 7806 Barry Cipra: Fermat prover points to next challenges. Science 22 March 1996, 1668-1669. 3277 John Coates: Elliptic curves with complex multiplication and Iwasawa theory. Bull. London Math.Soc. 23 (1991), 321-350. R. Coleman: Effective Chabauty. Duke Math. J. 52 (1985), 765-770. Very sharp upper estimates for the number of rational points in special cases. 5678 Jean-Louis Colliot-Thelene/Dimitri Kanevsky/Jean-Jacques Sansuc: Arithmetique des surfaces cubiques diagonales. 1938 WŸstholz, 1-108. 6324 Jean-Louis Colliot-Thelene/Kazuya Kato/Paul Vojta (ed.): Arithmetic algebraic geometry. SLN Math. 1553 (1993), 220p. 3-540-57110-8. DM 82. 1744 Gary Cornell/Joseph Silverman (ed.): Arithmetic geometry. Springer 1986. Standard reference. Gary Cornell/Joseph Silverman/Glenn Stevens (ed.): Modular forms and Fermat's last theorem. Springer 1997, 3-540-94609-8. $50. 3445 Pierre Deligne: Preuve des conjectures de Tate et de Shafarevich. Asterisque 121/122 (1985, 25-41. B. Edixhoven/J.-H. Evertse: Diophantine approximation and abelian varieties. SLN Math. 1566 (1993). 3-540-57528-6. DM 34. Fabiano/G. Pucci/A. Yger: Effective Nullstellensatz and geometric degree for zero-dimensional ideals. Acta Arithm. 78 (1996), 165-187. 1858 Gerd Faltings: Die Vermutungen von Tate und Mordell. Jber. DMV 86 (1984), 1-13. 1859 Gerd Faltings: Endlichkeitssaetze fuer abelsche Varietaeten ueber Zahlkoerpern. Inv. Math. 73 (1983), 349-366. Gerd Faltings: Lectures on the arithmetic Riemann-Roch theorem. Annals of Mathematics Studies 1993. Paperback ISBN 0-691-02544-4. $15. The arithmetic Riemann-Roch theorem has been shown recently by Bismut, Gillet and Soule'. The proof mixes algebra, arithmetic and analysis. "This book contains very deep and quite recent results. ... In contrast to the very interesting contents the style of presentation seems rather problematica to me ... There is more or less no motivation for definitions and results, and it is also not indicated what the results could be used for ... " (A. Cap). 4784 Gerd Faltings: Recent progress in diophantine geometry. 4727 Casacuberta/Castellet, 78-86. Gerd Faltings: Calculus on arithmetic surfaces. Annals Math. 118 (1984), 387-424. 1844 Gerd Faltings/Gisbert Wuestholz (ed.): Rational points. Vieweg 1986. 3604 Eberhard Freitag/Reinhardt Kiel: Etale cohomology and the Weil conjecture. Springer 1988. Gerhard Frey: Links between solutions of A-B=C and elliptic curves. SLN Math. 1380 (1989), 31-62. Gerhard Frey: Rationale Punkte auf Fermatkurven und getwisteten Modulkurven. J. reine u. angew. Math. 331 (1982), 185-191. Gerhard Frey: Links between stable elliptic curves and certain diophantine equations. Ann. Univ. Saraviensis 1 (1986), 1-40. Gerhard Frey: On Artin's conjecture for odd 2-dimensional representations. SLN Math. 1585 (1994). 3-540-58387-4. 3716 G. van der Geer/F. Oort/J. Steenbrink (ed.): Arithmetic algebraic geometry. Birkhaeuser 1991. Fernando Gouvea/Noriko Yui: Arithmetic of diagonal hypersurfaces over finite fields. Cambridge UP 1995, 180p. 0-521-49834-1. $33. This book deals with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. Gu''nter Harder: Eisensteinkohomologie und die Konstruktion gemischter Motive. SLN Math. 1562 (1993), 180p. 3-540-57408-5. 9663 Gu''nter Harder: Wittvektoren. Jber. DMV 99 (1997), 18-48. Yves Hellegouarch: Courbes elliptiques et quations de Fermat. These, Besancon 1972 (?). Yves Hellegouarch: Invitation aux mathematiques de Fermat-Wiles. Masson 1997, 400p. ISBN 2-225-83008-8 (pb) (or ISSN 1269-7842). 5363 John Horgan: Fermat's MacGuffin. Scientific American September 1993, 14-15. In June 1993 Andrew Wiles proposed a proof of Fermat's last theorem, although the complete paper, 200 pages long, has still to be examined in detail, most experts believe the proof should be true. For seven years, after that Frey and Ribet had reduced the problem to a (difficult!) problem about elliptic curves, Wiles virtually stopped writing papers, attending conferences or even reading anything unrelated to his goal. 4732 Wilfred Hulsbergen: Conjectures in arithmetic algebraic geometry. Vieweg 1992. 2718 Horst Knoerrer a.o.: Arithmetik und Geometrie. Birkhaeuser 1986. 1850 Neal Koblitz (ed.): Number theory related to Fermat's last theorem. Birkhaeuser 1982. 2054 V. Kolyvagin: On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves. MPI Mathematik Bonn 69/1990. 1848 Hanspeter Kraft: Algebraische Kurven und diophantische Gleichungen. 1847 Borho, 93-114. 3450 Gerhard Kramarz: All congruent number less than 2000. Math. Ann. 273 (1986), 337-340. 1885 Serge Lang: Integral points on curves. Publ. IHES 6 (1960), 27-43. Serge Lang: Higher dimensional diophantine problems. Bull. AMS 80 (1974), 779-788. 1889 Serge Lang: Hyperbolic and diophantine analysis. Bull. AMS 14 (1986), 159-205. 5207 Serge Lang: Vojta's conjecture. SLN Math. 1111 (1985), 407-419. 2015 Serge Lang: Fundamentals of diophantine geometry. Springer 1983. Serge Lang: Number theory III. Diophantine geometry. Springer 1991, 300p. DM 128. "Das vorliegende Buch gibt einen hervorragenden und geschmackvollen Ueberblick ueber die diophantische Geometrie." (G. Wuestholz). 4652 Serge Lang: Introduction to Arakelov theory. Springer 1988. 3607 Serge Lang: Elliptic curves - diophantine analysis. Springer 1978. Michael Larsen: Unitary groups and l-adic representations. Thesis. Princeton UP 1988. Michael Larsen: Arthmetic compactification of some Shimura surfaces. See Zentralblatt 760 (1993), 57. Qing Liu: Algebraic geometry and arithmetic curves. Oxford UP 2002, 460p. Pds 40. 3427 David Masser: Counting points of small height on elliptic curves. Bull. Soc.Math. France 117 (1989), 247-265. 3428 David Masser/Gisbert Wuestholz: Estimating isogenies on elliptic curves. Inv. Math. 100 (1990), 1-24. 3093 Barry Mazur: Number theory as gadfly. Am. Math. Monthly 98 (1991), 593-610. Predicts the key role of Taniyama's conjecture in the proof of Fermat's theorem. At the same time an introduction to Riemann surfaces for beginners! Very beautiful. 4935 Barry Mazur: Arithmetic on curves. Bull. AMS 14 (1986), 207-259. Barry Mazur: Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1977), 33-186. Barry Mazur: Rational isogenies of prime degree. Inv. Math. 44 (1978), 129-162. Barry Mazur/Andrew Wiles: Class fields of abelian extensions of Q. Inv. Math. 76 (1984), 179-330. J.-F. Mestre: Construction of an elliptic curve of rank ³ 12. Comptes Rendus 295 (1982), 643-644. J. Mestre: Formules explicites et minorations de conducteurs de varietes algebriques. Comp. Math. circa 58 (1986), 209-232. On the rank of the group of rational points of an elliptic curve. Carlos Moreno: Algebraic curves over finite fields. Cambridge UP 1990, 270p. 0-521-34252-x. Pds. 30. Should be somewhat difficult to read. J. Oesterle': Nouvelles approches du theoreme de Fermat. Asterisque 161-162 (1988), 165-186. Explains the link between Fermat's problem and the associated elliptic curve introduced by Hellegouarch and Frey. The proofs make essential use of the arithmetic theory of modular forms. A. Parshin: Algebraic curves over function fields I. Izv. Ak. Nauk SSSR 32 (1968), 1145-1170. A. Parshin: Quelques conjectures de finitude en geometrie diophantienne. Actes Congr. Int. Math. 1 (1970), 467-471. E. Peyre/Y. Tschinkel (ed.): Rational points on algebraic varieties. Birkha''user 2001, 450p. Eur 85. 4888 Christoph Poeppe: Der Beweis der Fermatschen Vermutung. Spektrum 1993/8, 14-16. Alf van der Poorten: Notes on Fermat's last theorem. Wiley 1996, 220p. 0-471-06261-8. Paulo Ribenboim: Fermat's last theorem for amateurs. Springer 1999. 3-540-98508-5. $40. Kenneth Ribet: On modular representations of Gal(A/Q) arising from modular forms. Inv. Math. 100 (1990), 431-476. [A=algebraic numbers.] Kenneth Ribet: Twists of modular forms and endomorphisms of abelian varieties. Math. Annalen 253 (1980), 43-62. Kenneth Ribet: From the Taniyama-Shimura conjecture to Fermat's last theorem. Ann. Fac. Sci. Toulouse Math. 11 (1990), 116-139. 5641 Kenneth Ribet: Wiles proves Taniyama's conjecture; Fermat's last theorem follows. Notices AMS 40 (1993), 575-576. 7178 Kenneth Ribet: Galois representations and modular forms. Bull. AMS 32 (1995), 375-402. 8338 Karl Rubin: Modularity of mod 5 representations. Internet 1995, 9p. An elliptic curve defined over Q and semistable at 3 and 5 is modular. 7768 Karl Rubin: Euler systems and exact formulas in number theory. Jber. DMV 98 (1996), 30-39. 3449 P. Satge': Un analogue du calcul de Heegner. Inv.Math. 87 (1987), 425-439. 1962 S. Schanuel: Heights in number fields. Bull. SMF 107 (1979), 433-449. 4801 Claus-Guenther Schmidt: Die Fermat-Kurve und ihre Jacobi-Mannigfaltigkeit.2718 Knoerrer, 9-28. 3594 Claus-Guenther Schmidt: Arithmetik abelscher Varietaeten mit komplexer Multiplikation. SLN Math. 1082 (1984). 3430 R. Schoof: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44 (1985), 483-494. Jean-Pierre Serre: Lectures on the Mordell-Weil theorem. Vieweg 1989, 220p. DM 52. Jean-Pierre Serre: Proprietes galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math. 15 (1972), 259-331. Jean-Pierre Serre: Sur les representations modulaires de degre' ? de Gal(A/Q). Duke Math. J. 54 (1987), 179-230. [A=algebraic numbers.] Goro Shimura: Correspondances modulaires et les fonctions zeta de courbes algebriques. J. Math. Soc. Japan 10 (1958), 1-28. Goro Shimura: On the factors of the Jacobian variety of a modular function field. J. Math. Soc. Japan 25 (1973), 523-544. Goro Shimura: Class fields over real quadratic fields and Hecke operators. Annals Math. 95 (1972), 130-190. Goro Shimura: On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J. 43 (1971), 199-208. 3150 T. Shioda: Mordell-Weil lattices and sphere packings. Am. J. Math. 113 (1991), 931-948. 1919 Joseph Silverman: Lower bound for the canonical height on elliptic curves. Duke Math. J. 48 (1981), 633-648. 11731 Simon Singh/Kenneth Ribet: Die Lo''sung des Fermatschen Ra''tsels. Spektrum 1998/1, 96-103. C. Soule'/D. Abramovich/J.-F. Burnol/J. Kramer: Lectures on Arakelov geometry. Cambridge UP, 190p. 0-521-41669-8. Pds. 30. S. Stepanov: Arithmetic of algebraic curves. Consultants Bureau 1994. 0-306-11036-9. G. Stevens: Stickelberger elements and modular parametrizations of elliptic curves. Inv. Math. 98 (1989), 75-106. On uniformization of elliptic curves by modular curves. 3560 N. Suwa: Fermat motives and the Artin-Tate formula II. Proc.Japan Ac. 67A (1991), 135-138. 8706 Peter Swinnerton-Dyer: Diophantine equations - the geometric approach. Jber. DMV 98 (1996), 146-164. 3444 L. Szpiro: La conjecture de Mordell. Asterisque 121/122 (1985), 83-103. 3322 L. Szpiro (ed.): Seminaire sur les pinceaux arithmetique: la conjecture de Mordell. Asterisque 127 (1985). J. Tunnell: Artin's conjecture for representations of octahedral type. Bull. AMS 5 (1981), 173-175. V. Voevodsky/G. Shabat: Equilateral triangulations of Riemann surfaces and curves over algebraic number fields. Circa 1990. 1737 Paul Vojta: Diophantine approximations and value distribution theory. SLN Math. 1239 (1987). Paul van Wamelen: On the CM character of the curves y^2=x^q-1. J. Number Theory 64 (1997), 59-83. Andre' Weil: L'arithmetique sur les courbes algebriques. Acta Math. 52 (1928), 281-315. Andre' Weil: The field of definition of a variety. Am. J. Math. 78 (1956), 509-524. Andrew Wiles: Modular elliptic curves and Fermat's last theorem. Ann. Math. 141 (1995), 443-551. 1938 Gisbert Wuestholz (ed.): Diophantine approximation and transcendence theory. SLN Math. 1290 (1987). J. Zarhin: Isogenies of abelian varieties over fields of finite characteristics. Mat. Sb. 95/137/3 (1974), 451-461. 1853 Horst Gu''nter Zimmer: Zur Arithmetik der elliptischen Kurven. Grazer Berichte 271 (1986), 110p.

71. Per Un Confronto Elenchiamo Le 18 Sezioni In Cui  Stata Divisa La
Translate this page Il risultato per cui gerd faltings ha ricevuto la medaglia Fields implica che, per ogni fissato n, il numero delle soluzioni x,y,z, se ne esistono,
http://felix.unife.it/Root/d-Mathematics/d-Guida-alla-matematica/t-I-matematici
Per un confronto elenchiamo le 18 sezioni in cui  stata divisa la matematica in occasione dell'ultimo Congresso Internazionale di Matematica a Kyoto, nell'agosto 1990: Logica matematica e fondamenti Algebra Teoria dei numeri Geometria Topologia Geometria algebrica Gruppi di Lie e rappresentazioni Analisi reale e complessa Algebre di operatori e analisi funzionale Teoria della probabilitˆ e statistica matematica Equazioni differenziali parziali Equazioni differenziali ordinarie e sistemi dinamici Fisica matematica Calcolo combinatorio Aspetti matematici dell'informatica Metodi computazionali Applicazioni della matematica alle altre scienze Storia, didattica, natura della matematica. Pianta provvisoria della biblioteca /* SOSTITUIRE DOPO LA STAMPA CON LA PIANTA */ Medaglie Fields Non esiste il premio Nobel per la matematica, perchŽ Alfred Nobel (1833-1896) o non aveva abbastanza soldi, o ci ha semplicemente dimenticati, o pensava che la matematica fosse una scienza meno importante delle altre, o perchŽ attristato da dolori sentimentali causatigli da un matematico, o forse per tutte queste cause insieme, non ha previsto il premio Nobel per la matematica. Dal 1936 esiste invece la medaglia Fields, che viene conferita ogni 4 anni (con pause dovute a eventuali guerre mondiali) in occasione dei Congressi Matematici Internazionali. Diamo l'elenco delle medaglie Fields finora assegnate: 1936 Lars Ahlfors (1907) Jesse Douglas (1897) 1950 Laurent Schwartz (1915) Atle Selberg (1917) 1954 Kunihiko Kodaira (1915) Jean-Pierre Serre (1926) 1958 Klaus Roth (1925) RenŽ Thom (1923) 1962 Lars Hšrmander (1931) John Milnor (1962) 1966 Michael Atiyah (1929) Paul Joseph Cohen (1934) Alexandre Grothendieck (1928) Stephen Smale (1930) 1970 Alan Baker (1939) Heisuke Hironaka (1931) Sergei Novikov (1938) John Thompson (1932) 1974 Enrico Bombieri (1940) David Mumford (1937) 1978 Pierre Deligne (1944) Charles Fefferman (1949) Gregori Margulis (1946) Daniel Quillen (1940) 1982 Alain Connes (1947) William Thurston (1946) Shing-Tung Yau (1949) 1986 Simon Donaldson (1957) Gerd Faltings (1954) Michael Freedman (1951) 1990 Vladimir Drinfeld (1954) Vaughan Jones (1952) Shigefumi Mori (1951) Edward Witten (1951) Ordinati per discipline matematiche si distribuiscono come segue, va per˜ detto che molti di questi matematici hanno lavorato anche in campi molto diversi da quello in cui hanno preso la medaglia Fields. Questa medaglia viene, per un accordo che finora non  mai stato violato, conferita soltanto a matematici di etˆ inferiore ai 40 anni (nell'elenco precedente la data di nascita di ciascuno  indicata tra parentesi). Algebra (2): Thompson, Quillen. Algebre di operatori (2): Connes, Jones. Analisi (5): Ahlfors, Douglas, Schwartz, Hšrmander, Fefferman. Geometria algebrica (6): Grothendieck, Hironaka, Mumford, Deligne, Faltings, Mori. Geometria differenziale e complessa (4): Kodaira, Atiyah, Margulis, Yau. Geometria differenziale in fisica matematica (2): Drinfeld, Witten. Logica (1): Cohen. Teoria dei numeri (4): Selberg, Roth, Baker, Bombieri. Topologia (8): Serre, Thom, Milnor, Smale, Novikov, Thurston, Donaldson, Freedman. Dal 1983 esiste anche il premio Rolf Nevanlinna, che viene conferito nella stessa occasione a uno scienziato che ha dato i migliori contributi nel campo della matematica applicata in informatica. E' stato vinto nel 1982 da R.ÊTarjan, nel 1986 da L.ÊValiant. Nel 1990 questo premio  andato ad A.ÊRazborov, di Mosca, allora 27 anni, per lavori nella teoria della complessitˆ degli algoritmi per funzioni booleane. Forse la pi famosa congettura non risolta della matematica  la congettura di Fermat (1601-1665), che dice che non esistono analoghi di grado superiore delle triple pitagoree, cioŽ non esistono numeri naturali x,y,z tutti diversi da zero, tale che xn + yn = zn, se n  un numero naturale maggiore di 2. Il risultato per cui Gerd Faltings ha ricevuto la medaglia Fields implica che, per ogni fissato n, il numero delle soluzioni x,y,z, se ne esistono,  comunque finito. Questo risultato, ottenuto con metodi avanzatissimi della geometria algebrica,  forse il pi sensazionale tra quelli che i vincitori delle medaglie Fields possono vantare. Le tecniche utilizzate da Faltings sono dovute al francese Alexandre Grothendieck, altra medaglia Fields, che negli anni 1960-1970 ha rivoluzionato la geometria algebrica con una massiccia introduzione di algebra commutativa e un sistematico uso della teoria delle categorie. Di ogni Congresso Matematico Internazionale, organizzato dall'Unione Matematica Internazionale, vengono pubblicati gli atti, che spesso contengono i testi di conferenze estremamente interessanti, perchŽ frequentemente impulsi a nuovi campi di ricerca, ma purtroppo da molto tempo non vengono pi acquistati dalla nostra biblioteca. Abbiamo invece un volume che racconta, naturalmente in forma molto breve, la storia di questi congressi fino al 1986: D. ALBERS/G. ALEXANDERSON/C. REID: International Mathematical Congresses. Springer 1987. Recentemente  stata fondata l'Unione Matematica Europea, di cui  presidente il tedesco Friedrich Hirzebruch, un geometra algebrico, nato nel 1927, vicepresidente  Alessandro Figˆ-Talamanca, un analista armonico, nato nel 1938, che  anche presidente dell'Unione Matematica Italiana (UMI). Esiste anche l'Associazione per le Donne in Matematica (Association for Women in Mathematics), un problema delicato di cui parleremo pi tardi. Premi Wolf Il dottor Wolf (1887-1981), un chimico tedesco emigrato in Cuba prima della prima guerra mondiale, amico di Fidel Castro, vissuto in Israele dal 1973, fond˜ con 10 milioni di dollari la Wolf Foundation, che ogni anno conferisce premi in agricultura, chimica, matematica, medicina e fisica. I vincitori di questo premio sono scienziati molto famosi: I premi in matematica sono stati assegnati finora a Izrail Gelfand, Carl Siegel (1896-1981), Jean Leray, AndrŽ Weil, Henri Cartan, Andrei Kolmogorov (1903-1987), Lars Ahlfors, Oscar Zariski (1899-1986), Hassler Whitney, Mark Krein, Shiing-shen Chern, Paul Erdšs, Kunihiko Kodaira, Hans Lewy, Samuel Eilenberg, Atle Selberg, Kiyoshi Ito, Peter Lax, Friedrich Hirzebruch, Lars Hšrmander, nomi che ogni matematico dovrebbe conoscere. La lista arriva fino al 1988, perchŽ non abbiamo trovato altre informazioni. Esiste un altro premio importante, il premio Crafoord, che viene conferito ogni 7 anni dall'accademia reale svedese in alcuni campi per cui non esiste il premio Nobel: astronomia, biologia, geofisica, matematica. Tra i matematici lo hanno ottenuto Louis Nirenberg, Vladimir Arnold, Pierre Deligne, Alexandre Grothendieck. Grothendieck poi non lo ha accettato, dicendo tra l'altro che non ritiene che abbia senso conferire questi premi a scienziati che in fondo non ne hanno pi bisogno. Comunque non tutti la pensano cos“. Per noi, come pubblico, questi premi sono comodi, perchŽ impariamo a conoscere i nomi pi prestigiosi della matematica mondiale. D. ALBERS/G. ALEXANDERSON (c.): Mathematical people. BirkhŠuser 1985. Volete conoscere le idee e la vita giornaliera di alcuni dei pi famosi matematici degli ultimi decenni? Qui trovate lunghe interviste con Garrett Birkhoff, David Blackwell, Shiing-shen Chern, John H.ÊConway, H.ÊCoxeter, Persi Diaconis, Paul Erdšs, Martin Gardner (quello dei giochi), Ronald Graham, Paul Halmos, Peter Hilton, John Kemeny, Morris Kline, Donald Knuth (quello del TEX), Benoit Mandelbrot (che sostiene di aver inventato i frattali), Henry Pollack, George Polya (1887-1985), Mina Rees, Constance Reid (la biografa di Courant e di Hilbert), Herbert Robbins (del Courant/Robbins), Raymond Smullyan, Olga Taussky-Todd, Albert Tucker, Stanislaw Ulam (1909-1984) con moltissime fotografie e dati biografici. Opere generali e di consultazione A Manuali, trattati di matematica generale M Monografie MB Bibliografia P Proceedings, miscellanee, collane generali O P AMS Collana dell'AMS P ICM Congressi Matematici Internazionali P IND Collana dell'INDAM P UMI Convegni dell'UMI WDM Indirizzario mondiale dei matematici X Dizionari, repertori di matematica Come abbiamo detto,  purtroppo molto incompleta la collezione dei Proceedings dei Congressi Matematici Internazionali. La collana dell'AMS, citata i.g. con il titolo Symposia in pure Mathematics,  importante e contiene spesso esposizioni panoramiche di una disciplina. H. EBBINGHAUS e.a.: Numbers. Springer 1991. Il libro di Ebbinghaus e.a. presenta, a livello avanzato, ma partendo dagli inizi e in modo molto esauriente, alcuni aspetti della matematica elementare, legati al concetto di numero e delle sue generalizzazioni. E' un libro estremamente ricco, scritto da alcuni dei pi famosi autori matematici tedeschi di oggi. Si inizia con i numeri naturali, interi, razionali, seguono i numeri reali, descritti mediante sezioni di Dedekind, successioni di Cauchy, successioni decrescenti di intervalli, e metodo assiomatico, il 3¡ capitolo tratta dei numeri complessi e il loro significato geometrico, segue il teorema fondamentale dell'algebra, che dice che ogni polinomio non costante con coefficienti complessi possiede una radice nell'ambito dei numeri complessi, il 5¡ capitolo  interamente dedicato al numero ¹, i suoi legami con le funzioni trigonometriche e le sue rappresentazioni mediante serie e prodotti infiniti. Dopo questi numeri classici seguono le generalizzazioni: Quaternioni e il loro uso nella rappresentazione delle rotazioni nello spazio tridimensionale, i numeri di Cayley, tutto inquadrato nella teoria delle algebre con molto spazio concesso all'uso della topologia nella dimostrazione di teoremi puramente algebrici. Un'algebra  uno spazio vettoriale che  allo stesso tempo e in modo compatibile con la struttura di spazio vettoriale un anello (non necessariamente commutativo): l'esempio classico  l'algebra delle matrici nxn su un corpo. Ogni numero complesso c pu˜ essere identificato con una matrice, quella matrice che descrive l'applicazione lineare da C in C che si ottiene se si moltiplicano tutti i numero complessi con c, in modo tale che all'addizione e alla moltiplicazione di numeri complessi corrispondono l'addizione e la moltiplicazione tra le matrici corrispondenti. Qui C viene considerato come spazio vettoriale reale di dimensione 2. In questo modo il corpo dei numeri complessi  in pratica la stessa cosa come una certa sottoalgebra dell'algebra della matrici 2x2 con coefficienti reali. In modo simile anche i quaternioni diventano un'algebra di matrici. Il libro termina con un'introduzione all'analisi nonstandard, di cui parleremo fra poco nella logica matematica, e del metodo di John H. Conway (John B. Conway  invece autore di uno dei migliori testi di analisi funzionale) di definire i numeri reali mediante giochi. Non ho mai studiato in dettaglio questo metodo, ma ad alcuni piace, i due John Conway sono matematici famosi, e uno degli scopi di questo seminario  proprio di suscitare un p˜ quel piacere di giocare con i numeri e con gli oggetti matematici che un'impostazione dottrinaria facilmente impedisce o rovina. L'ultimo capitolo parla di insiemi, assiomi, metamatematica.

72. Faq.math
Contact Barry Mazur or Serre, or faltings, or Ribet, or . Simon Cambridge UK 27 Oxford U UK 1986 faltings, gerd 1954 Germany 32 Princeton U USA 1986
http://victoria.tc.ca/science/information/math/faq.math.html
bf04@UTMartn.bitnet (preferred) or kvax@utkvx.UTK.edu alopez-o@maytag.UWaterloo.ca wmsi@daisy.uwaterloo.ca wmsi@daisy.waterloo.edu ... pari@ceremab.u-bordeaux.fr and for the Macintosh versions to bernardi@mathp7.jussieu.fr A: Mathematica Purpose: Mathematical computation and visualization, symbolic programming. Contact: Wolfram Research, Inc. 100 Trade Center Drive Champaign, IL 61820-7237 Phone: 1-800-441-MATH A: Macsyma Purpose: Macsyma. Contact: Macsyma Inc. 20 Academy Street Arlington, MA 02174 tel: 617-646-4550 fax: 617-646-3161 email: info-macsyma@macsyma.com A: Matlab Purpose: `matrix laboratory' for tasks involving matrices, graphics and general numerical computation. Contact: The MathWorks, Inc. 21 Prime Park Way Natick, MA 01760 508-653-1415 info@mathworks.com A: Cayley Purpose: Computation in algebraic and combinatorial structures such as groups, rings, fields, modules and graphs. Available for: SUN 3, SUN 4, IBM running AIX or VM, DEC VMS, others Contact: Computational Algebra Group University of Sydney NSW 2006 Australia Phone: (61) (02) 692 3338 Fax: (61) (02) 692 4534 cayley@maths.su.oz.au

73. Gerd Faltings Université Montpellier II
Translate this page gerd faltings (1954-0BC). Cette image et la biographie complète en anglais résident sur le site de l’université de St Andrews Écosse
http://ens.math.univ-montp2.fr/SPIP/article.php3?id_article=2165

74. Gerd Faltings At MSRI - P-adic Hodge Theory, I
gerd faltings p-adic Hodge theory, I. MSRI Streaming Video Series gerd faltings - p-adic Hodge theory, I. A PDF version of the lecture notes is
http://www.msri.org/publications/ln/msri/2002/hodgetheory/faltings/1/

75. Gerd Faltings At MSRI - Introduction To Shimura Varieties
gerd faltings Introduction to Shimura varieties.
http://www.msri.org/publications/ln/msri/2002/langlands/faltings/1/

76. Matematici DL
faltings, gerd (Gelsenkirchen-Buer, Germania 1954 - ) Medaglia Fields
http://encyclopedie-it.snyke.com/articles/matematici_d_l.html

77. Citebase - A De Rham-Witt Approach To Crystalline Rational
G/A, 10 faltings, gerd Fisocrystals on open varietiesresults and conjectures. The Grothendieck Festschrift, Vol. II, 219-248, Progr.
http://citebase.eprints.org/cgi-bin/citations?id=oai:arXiv.org:math/0105008

78. Citebase - Integral Motives And Special Values Of Zeta Functions
G/A, faltings, gerd, and Wustholz, Gisbert (Eds). Rational points. Papers from the seminar held at ? the MaxPlanck-Institut fur Mathematik, Bonn,
http://citebase.eprints.org/cgi-bin/citations?id=oai:arXiv.org:math/0204065

79. Biografisk Register
Translate this page faltings, gerd (1954-) Feigenbaum, Mitchell J. (1943-) Feit, Walter Fermat, Pierre de (1601-65) Ferrari, Ludovico (1522-65) Ferro, Scipione (1465-1526)
http://www.geocities.com/CapeCanaveral/Hangar/3736/biografi.htm

80. Kosmologika - Vetenskapsmännen
Translate this page 1986 faltings, gerd 1986 Freedman, Michael 1990 Drinfeld, Vladimir 1990 Jones, Vaughan 1990 Mori, Shigefumi 1990 Witten, Edward (1951- )
http://www.kosmologika.net/Scientists/
På Kosmologikas sidor återfinns på många ställen länkar till kortare biografier över olika vetenskapsmän som har deltagit i utvecklandet av dessa spännande teorier. På denna sida finns länkar till alla dessa biografier samlade på ett enda ställe. Personerna är dels listade i både bokstavs- och födelsedagsordning men även efter nobelprisår (för de personer som har fått Nobelpriset) samt i betydelsefullhetsordning för vetenskapen. Dessutom har jag nyligen lagt till Brucemedaljörer som är den högsta utmärkelsen inom astronomin, Nobelpriset undantaget, samt Fields medalj som är matematikens Nobelpris och som dessutom bara delas ut en gång vart fjärde år samt slutligen Wolfpriset som är ett israeliskt pris som rankas steget under Nobelpriset men som ofta är åtminstone ett decennium snabbare med utnämningarna. Alfabetisk ordning Ahlfors, Lars (1907- )
Alembert, Jean le Ronde d' (1717-1783)

Alfvén, Hannes Olof Gösta (1908-1995)

Alpher, Ralph A. (1921- )
...
Zwicky, Fritz (1898-1974)

Födelsedagsordning Fermat, Pierre de (1601-1665)
Pascal, Blaise (1623-1662)

Huygens, Christiaan (1629-1695)

Newton, Isaac (1642-1727)
...
Smarr, Larry (194?- )

Nobelpristagare Lorentz, Henrik Antoon (1853-1928)

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 4     61-80 of 97    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter