Geometry.Net - the online learning center
Home  - Scientists - Dinostratus
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Dinostratus:     more detail
  1. 320 Bc: 320 Bc Births, 320 Bc Deaths, Perdiccas, Timon of Phlius, Menaechmus, Timocharis, Gongsun Long, Dinostratus, Alcetas, Zoilus
  2. Dinostratus: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2001
  3. 390 Bc: 390 Bc Births, 390 Bc Deaths, Tollund Man, Andocides, Heraclides Ponticus, Mozi, Battle of the Allia, Dinostratus, Attalus, Amadocus I

61. Focus: Fora
dinostratus Diocles Dionysodorus Diophantus Domninus Eratosthenes Euclid Eudemusof Rhodes Eudoxus dinostratus Hippias Hippocrates Nicomedes Oenopides
http://www.focusmag.gr/fora/view-message.rx?oid=163444

62. ROV01_6.html
dinostratus quadratrix Maple Math . plot(x*cot(Pi*x)/2, x=1/2..1/2,scaling=constrained);. Maple Plot. 6. Beats . . p=plot(6*sin(x/4)*sin(4*x),
http://math.haifa.ac.il/ROVENSKI/rovenski/rov01_6.html
ROV01_6.MWS Part 1. Functions and Graphs with MAPLE Rovenski Vladimir, Haifa Chapter . Graphs of Tabular and Continuous Functions restart: 1.1 Basic Two-Dimensional Plot with(plots): # for example, command display from the library plots Warning, existing definition for changecoords has been overwritten
Let the function be given by the table of values ( ), where = 1, 2, ..., n.
For example, Date: 12 13 14 15 16 17 18 19 20 21
Temp.: 15 17 17.5 19 20 19.5 18 17 17 19 DateTemp:= [[12,15],[13,17],[14,17.5],[15,19],[16,20],[17,19.5],[18,18],[19,17],[20,17],[21,19]]; Plot the polygon through these points Line:=plot(DateTemp, labels=[T, D]): %; Plot the points separately Points:=plot(DateTemp, style=point, symbol=circle): %; Form arrays with x- and y-coordinates of the given points Days:=[seq(i+11, i=1..10)]; Temp:=[seq(op(2, DateTemp[i]), i=1..nops(Days))]; Transform the temperature from Celsius to Fahrenheit by the formula F=F(C) . (fix the number of to 3) Digits:=3: Plot the polygon LINE1 by the different method plot([seq([Days[i], Temp[i]], i=1..10)]);

63. Predmety - Predmety
Hippokrates, Hippias, Archytas, Menaechmus, dinostratus. 6. The problems withinfinity. Zeno of Elea and his arguments about motion. Theodorus of Cyrene
http://www.mff.cuni.cz/vnitro/is/sis/predmety/kod.php?kod=UMP015

64. DODATEK A - CHRONOLOGICZNA LISTA NAJWA¯NIEJSZYCH MATEMATYKÓW
c. 322); Bryson of Heraclea (c 350?); Menaechmus (c. 350); Theudius of Magnesia(c. 350?); Thymaridas (c. 350); dinostratus (fl. c. 350
http://212.160.182.29/1024/materialy/historia/lista.htm

65. New Dictionary Of Scientific Biography
Translate this page dinostratus Diocles Dionis du Séjour, Achille-Pierre Dionysodorus Diophantus ofAlexandria Dirichlet, Gustav Peter Lejeune Dodgson, Charles Lutwidge
http://www.indiana.edu/~newdsb/math.html
Make Suggestions
Mathematics
Abel, Niels Henrik
Abraham Bar ?iyya Ha-Nasi
Abu Kamil Shuja? Ibn Aslam Ibn Mu?ammad Ibn Shuja?
Abu'l-Wafa? al-Buzjani, Mu?ammad Ibn Mu?ammad Ibn Ya?ya Ibn Isma?il Ibn al- ?Abbas
Adams, John Couch
Adelard of Bath
Adrain, Robert
Aepinus, Franz Ulrich Theodosius
Agnesi, Maria Gaetana
Aguilon, François d'
A?mad Ibn Yusuf Aida Yasuaki Ajima Naonobu Akhiezer, Naum Il'ich Albert, Abraham Adrian Albert of Saxony Alberti, Leone Battista Aleksandrov, Pavel Sergeevich Alembert, Jean Le Rond d' Alzate y Ramírez, José Antonio Ampère, André-Marie Amsler, Jakob Anatolius of Alexandria Anderson, Oskar Johann Viktor Andoyer, Henri Angeli, Stefano Degli Anthemius of Tralles Antiphon Apollonius of Perga Appell, Paul Arbogast, Louis François Antoine Arbuthnot, John Archimedes Archytas of Tarentum Argand, Jean Robert Aristaeus Aristarchus of Samos Arnauld, Antoine Aronhold, Siegfried Heinrich Artin, Emil Atwood, George Autolycus of Pitane Auzout, Adrien

66. List Of Scientists By Field
Translate this page dinostratus. Diocles. Diocles of Carystus. Dionis du Séjour, Achille-Pierre.Dionis du Séjour, Achille-Pierre. Dionis du Séjour, Achille-Pierre
http://www.indiana.edu/~newdsb/d.html
Dahlberg, Gunnar Dainelli, Giotto Dainelli, Giotto Dakin, Henry Drysdale Dakin, Henry Drysdale Dal Piaz, Giorgio Dal Piaz, Giorgio Dale, Henry Hallett Dale, Henry Hallett Dale, Henry Hallett Dall, William Healey Dalton, John Dalton, John Dalton, John Dalton, John Call Dalton, John Call Daly, Reginald Aldworth Daly, Reginald Aldworth Dam, Henrik Dam, Henrik Dana, James Dwight Dandelin, Germinal Pierre Dandelin, Germinal Pierre Danforth, Charles Haskell Danforth, Charles Haskell Daniell, John Frederic Daniell, John Frederic Daniell, John Frederic Daniels, Farrington Danti, Egnatio Danti, Egnatio Dantzig, David van Dantzig, David van Dantzig, David van Darboux, Jean-Gaston D'Arcet, Jean D'Arcy, Patrick D'Arcy, Patrick Darlington, Cyril Dean Darlington, William Darwin, Charles Galton Darwin, Charles Galton Darwin, Charles Robert Darwin, Charles Robert Darwin, Charles Robert Darwin, Erasmus Darwin, Erasmus Darwin, Erasmus Darwin, Erasmus Darwin, Francis Darwin, George Howard Darwin, George Howard Dasypodius, Cunradus Dasypodius, Cunradus Daubenton, Louis-Jean-Marie Daubenton, Louis-Jean-Marie

67. Definition Of Enslave
Definition of Quadratrix (n.) A curve made use of in the quadrature of othercurves; as the quadratrix, of dinostratus, or of Tschirnhausen.
http://brainydictionary.com/words/en/enslave160426.html
Atlas Dictionary Encyclopedia Geography ... Add the "Word of the Day" to Your Site - it's Easy!
Web brainydictionary.com definition of enslave Enslave
To reduce to slavery; to make a slave of; to subject to a dominant influence.
Related Word Definitions:
Dominant
Influence Make Of ... To
Translation Links:
Translation of Enslave

Dominant
Influence Make ... To Encyclopedia Links:
Dominant
Make Slavery Subject ... To Quote Links:
Dominant
Influence Reduce Slave ... RSS Feeds About Us Inquire Privacy Terms

68. Project MUSE
Another mechanical curve, the quadratrix, allowed dinostratus (or perhaps Nicomedes)to square the circle. Neither solution was satisfactory enough to end
http://muse.jhu.edu/journals/eighteenth-century_studies/v037/37.2loveland.html
How Do I Get This Article? Athens Login
Access Restricted
This article is available through Project MUSE, an electronic journals collection made available to subscribing libraries NOTE: Please do NOT contact Project MUSE for a login and password. See How Do I Get This Article? for more information.
Login: Password: Your browser must have cookies turned on Loveland, Jeff "Panckoucke and the Circle Squarers"
Eighteenth-Century Studies - Volume 37, Number 2, Winter 2004, pp. 215-236
The Johns Hopkins University Press

Abstract
Search
Journals About MUSE Contact Us

69. JMM HM DICIONÁRIO
Translate this page dinostratus Diophantus Diocles Diogenes Laertius. Eratóstenes de Cirene (-280-200?)Euclides de Alexandria (c. -300) Eudémio de Rodes (-400-347?)
http://phoenix.sce.fct.unl.pt/jmmatos/HISTMAT/HMHTM/HMDIC.HTM
Bibliografia
Recursos na rede
bem vindos em latim
Anaximandro (-611-545)
Antifonte
Aristarco de Samos (-310-230?)
Aristeo (c. -330)
Arquimedes de Siracusa (-287?-212)
Arquitas de Tarento (c. -375)
Apollonius
Archimedes
Boetius Apollonios of Perga Aristarchos Aristaeus Aristotle Archimedes of Syracuse Archytas Apollonius of Perga Aristarchus Aristaeus Aristotle Archimedes of Syracuse Archytas Boethius Apollonios Diofanto de Alexandria (c. 250) Diophantus Democritos Dinostratos Diophantos Diocles Democritos Dinostratus Diophantus Diocles Diogenes Laertius Euclides de Alexandria (c. -300) Filolaos Endemus Eudoxus Philolaus Eratosthenes Euclid of Alexandria Endemos Eudoxos of Cnidos Eratosthenes Euclid of Alexandria Endemus Eudoxus of Cnidos Philolaus Euclide Hiparco de Alexandria (-190-120) Hipasos Hipsicles Herodotus Hipparchus Hero Herodotos Hypatia Hipparchos Hippocrates of Chios hekat Heron Herodotus Hypatia Hipparchus Hippocrates of Chios Iamblichus Iamblichos Iamblichus Menecmo (c. -350)

70. History Of Mathematics Chronology Of Mathematicians
322); Bryson of Heraclea (c 350?); Menaechmus (c. 350) *SB; Theudius of Magnesia(c. 350?); Thymaridas (c. 350); dinostratus (fl. c. 350
http://www.cs.herts.ac.uk/~comqcln/chronology_math.html

71. DINOSTRATUS
dinostratus. Mathematius, Terragoni quandam speciem invenit, et Geometriaminsigniter excoluit. Post Pythagoram vixit.
http://www.uni-mannheim.de/mateo/camenaref/hofmann/d/books/d_1301.html
December 2004 Ruediger Niehl
typed text - structural tagging complete - no semantic tagging - no spell check
image:
DINOSTRATUS
Mathematius, Terragoni quandam speciem invenit, et Geometriam insigniter excoluit.
Post Pythagoram vixit.

72. Greek Democracy
Apollonius Archimedes Archytas Aristaeus Aristotle Autolycus of Pitane Bryson CallippusChrysippus Cleomedes Conon Democritus dinostratus Diocles Dionysodorus
http://lilt.ilstu.edu/connections/2002BBabstracts/greek_democracy.htm
The Democratic foundation established by the ancient Greeks Abstract: Our integrated project blends the subjects of math and history. Since two of our group members never bothered to show up these are the only two subjects we will be covering, with the two history majors focusing on religion and government respectively. The math portion will focus on famous Greek mathematicians. With the help of a special education major, we will alter the plan to cater to the needs of special needs students.
I plan to use the week to explain how the ancient Greeks introduced a democratic form of government. This was a revolutionary form of rule in a world of dictators and tyrants. Throughout the week the class will learn about the origins of Greek democracy and its prominent figures. We will then compare and contrast the Greek form of democracy to the one used in our own government. We will also be discussing the possible reasons why democracy failed in Greece and if it seems possible for the United States to suffer the same fate. Names and Majors of the Team Members:
  • Clint Shewmaker- History Education Brandon Schoenman- History Education Jose Gonzalez- Mathematics Education Tom Witschi- Special Education
Subjects Integrated:
  • History/ Government: The Democratic foundation established by the ancient Greeks History: Greek Gods Math: The Mathematical foundations that was built by the Greeks
Objectives:
  • Upon completion of this lesson, participating students will be able to note five key similarities between the ancient Greek democracy and the democracy of the United States.

73. The Dark Side Of The Moon
Since the quadrature through Hippias curve was specifically given later bydinostratus, we shall describe this work in the next chapter.
http://members.fortunecity.com/templarser/moon.html
web hosting domain names photo sharing
Duncan Graham-Rowe Astronomers are taking the search for somewhere quiet to work to new extremes with a plan to put a radio telescope on the far side of the Moon. The advantage of this unusual location is that the Moon would act as a massive shield, protecting the telescope against radio emissions from Earth. Astronomers could also listen to low radio frequencies that don't penetrate the Earth's atmosphere. Claudio Maccone, an astronomer at the Centre for Astrodynamics in Turin, Italy, is assessing the concept for the International Academy of Astronautics. He even has his eye on a plot of lunar real estate. A 100-kilometre-wide crater called Daedalus the Moon . Maccone is due to present the results of his study to the International Astronautical Congress next October. If the plans are approved, the first step will be to design a satellite probe to orbit the Moon and check there really is a quiet zone.
Jupiter's giant light show SOMETHING strange is happening on Jupiter. Its magnetic field extends hundreds of times further out into space than previously thought, creating auroras that make the Earth's northern lights seem feeble in comparison. Jupiter is the giant of the Solar System, more than a thousand times as massive as Earth. In January 2001, the combined power of the Cassini and Galileo space probes, the Chandra X-ray telescope and the Hubble Space Telescope were all trained on the Jovian magnetosphere - the region controlled by the planet's magnetic field. Magnetic field lines fan out from a planet like the lines of iron filings from the poles of a bar magnet. Auroras are caused by ions zipping along these lines, so researchers can use the location of auroras to track how far out into space the planet's magnetic field lines can trap ions from the solar wind.

74. Ancient Greek Mathematics
Chrysippus , Cleomedes , Conon , Democritus , dinostratus , Diocles ,Dionysodorus , Diophantus , Domninus , Eratosthenes , Euclid , Eudemus of Rhodes
http://www.mlahanas.de/Greeks/MathLinks.htm
Ancient Greek Mathematics
LINKS The Science of Magnitudes. The Beginnings: The Greeks, Scientists and Artists
  • See some beautiful Proofs of Ancient Greek Mathematicians
http://www.calstatela.edu/faculty/hmendel/Ancient%20Mathematics/VignettesAncientMath.html
  • Read Euclid Elements and learn ancient Greek to read the original text
http://www.du.edu/~etuttle/classics/nugreek/contents.htm
  • Euclid Elements, a well known Website
http://aleph0.clarku.edu/~djoyce/java/elements/toc.html
  • Ancient Mathematicians (French Language with links)
http://perso.wanadoo.fr/jean-paul.davalan/hist/
  • Geometric Problems of Antiquity
Eric W. Weisstein. "Geometric Problems of Antiquity." From MathWorld A Wolfram Web Resource. http://mathworld.wolfram.com/GeometricProblemsofAntiquity.html
Individual Biographies from the University of St Andrews of the mathematical work of:
Anaxagoras Anthemius Antiphon Apollonius ... Zenodorus
  • Various mathematical problems
The Ten Means of Ancient Greece When is a Triangle Not a Triangle?

75. Ancient Greek Portraits And Biographies
dinostratus Diodorus Siculus Diogenes Apolloniates Diogenes Laërtius Diogenes of Sinope Diogenianus of Heraclea Dion Dionysodorus
http://www.mlahanas.de/Greeks/Portraits.htm
You can support this site by shopping at AllPosters.com Click here to buy posters! Ancient Greek Portraits and Biographies Michael Lahanas
Biographies A Achaeus of Eretria Achilles Tatius Acrotatus Aelianus Tacticus ... Alexander the Great (Plutarch) Alexander of Myndus Alexander of Pherae Alexander Polyhistor Alexander I Balas Alexander II of Epirus ... Alexis Ameinocles of Corinth Ammonius Saccas Amyntas I Amyntas IV Anacharsis ... Andocides Andronicus Cyrrhestes Angelion Antalcidas Anthemius Antigonus I Monophthalmos Antigonus II Gonatas ... Antoninus Liberalis Antyllus Anyte of Tegea Apelles Apollodorus of Athens Apollodorus of Carystus ... Apollodotus I Apollonidas of Sicyon Apollonius Dyscolus Apollonius Mys Apollonius of Perga Apollonius Rhodes Apollophanes Aratus of Soli Arcesilaus Archelaus Archermus Archestratus of Gela Archias of Corinth Archidamus II Archidamus III Archilochus Archimedes of Syracuse ... Aristides Aristillus of Samos Aristippus Aristomachus of Argos Ariston of Chios Ariston of Ceos (Iulis) Aristophanes Aristophanes of Byzantium Aristotle Aristotle (Diogenes Laertius) ... Artemidorus of Daldis Artemon of Miletus Artemon Periphoretos Asclepiades of Samos Asclepiades of Bithynia Aspasia Athenaeus of Cyzicus Athenaeus of Atteleia Athenaeus of Naucratis Athenodorus of Rhodes Attalus I Autolycus of Pitane B Bacchylides Bateia Bathycles of Magnesia Berenice I ... Bion Biton Brasida s Bryaxis Bryson Bupalus of Chios C Callippus Calamis Callias Callicrates ... Callimachus of Cyrene Callimachus of Athens Callinus of Ephesus Callisthenes Cantharus of Sicyon Carcinus Carneades Cassander Chares of Lindos Charon of Magnesia

76. Chapter Q to Quadrilateral Of Q By Webster's Dictionary (1913 Edition)
trixes or trices NL. (Geom.) A curve made use of in the quadrature of othercurves; as the quadratrix, of dinostratus, or of Tschirnhausen.
http://www.bibliomania.com/2/3/257/1208/23779/4.html
Having four equal sides, the opposite sides parallel, and four right angles; square. Figures, some round, some triangle, some quadrate Foxe. Produced by multiplying a number by itself; square. Quadrate and cubical numbers." Sir T. Browne. Square; even; balanced; equal; exact. [Archaic] " A quadrate , solid, wise man." Howell. Squared; suited; correspondent. [Archaic] " A generical description quadrate to both." Harvey. Quadrate bone (Anat.) a bone between the base of the lower jaw and the skull in most vertebrates below the mammals. In reptiles and birds it articulates the lower jaw with the skull; in mammals it is represented by the malleus or incus. Quadrate
Quad"rate n. [L. quadratum . See Quadrate a. (Geom.) A plane surface with four equal sides and four right angles; a square; hence, figuratively, anything having the outline of a square. At which command, the powers militant
That stood for heaven, in mighty quadrate joined. Milton. (Astrol.) Note under Aspect (Anat.) The quadrate bone. Quadrate
Quad"rate v. i. Quadrated Quadrating .] [See Quadrate a.

77. 1913 US Webster S Unabridged Dictionary - Q
trices (pl. ) of Quadratrix. Quadratrix (n.) A curve made use of in the quadratureof other curves; as the quadratrix, of dinostratus, or of Tschirnhausen.
http://dave.pluckerbooks.com:81/works/webster/1913dict/q.html

78. Jooned
juures. Aastal 350 uuris seda dinostratus ringi kvadratuuri probleemi juures.Kapajoont tuntakse ka kui Gutshoveni kõverat. Esimesena
http://www.art.tartu.ee/~illi/kunstigeomeetria/koverad/jooned7.htm
versiera'ks, mis tähendab itaalia keeles naiskuradit või nõida. Varem, kui Agnesi (1748 raamatus "Instituzioni Analitiche"), uurisid seda joont ka Fermat ja Guido Grandi (1703).
Siugjoont ehk serpentiini uuris 1701 aastal Newton ja kandis selle oma 3ndat järku joonte klassifikatsiooni, mille avaldas John Harris raamatus "Lexicon Technicum" aastal 1710.
Selle joone leidis Hippas aastal -430 ja kasutas seda nurga trisektsiooni probleemi juures. Aastal -350 uuris seda Dinostratus ringi kvadratuuri probleemi juures.
Joon on nimetatud shoti inseneri James Watt'i (1736-1819) auks. Praktiliselt saab sellise kujuga joone kahe elastse ringjoone abil.
edasi

register

79. Academia
THE ACADEMY 1, History. 1. dinostratus THE SQUARING OF THE CIRCLE. dinostratusproved that the trisectrix of Hippias could be used
http://www.iessandoval.net/descartes/ingles/maths_workshop/A_history_of_Mathemat
THE ACADEMY 1 History DINOSTRATUS THE SQUARING OF THE CIRCLE Dinostratus proved that the trisectrix of Hippias could be used to solve this problem after discovering that the side of the square is the mean proportional between the arc of the quarter circle AC and the segment DQ. There are various stages to the reductio ad absurdum proof which are illustrated in the following windows: Let the circle with centre D and radius DR intersect the trisectrix at S and the side of the square at T. Draw the perpendicular SU to side DC from point S. As the arcs are proportional to the radii then AC/AB=TR/DR (2) From (1) and (2) it must follow that TR=AB (3) S is the point on the trisectrix which satisfies TR/SR=AB/SU (4) From (3) and (4) it follows that SR=SU However, this is absurd as the perpendicular is the shortest distance between a point and a line. Therefore, DR cannot be longer than DQ. 2.- We repeat this way of reasoning with the hypothesis

80. 320 V. Chr.
Translate this page 1939) Dieudonne, Jean (1906 - 1992) Digges, Thomas (1546 - 1595) Dinghas, Alexander(1908 - 1974) Dini, Ulisse (14.11.1845 - 28.10.1918) dinostratus (um 390
http://320_v_chr.exsugo.de/

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 4     61-80 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter