Geometry.Net - the online learning center
Home  - Scientists - De Rham Georges
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         De Rham Georges:     more detail
  1. Varietes differentiables: Formes, Courants, Formes Harmoniques. by Georges de Rham, 1955
  2. Essays on Topology and Related Topics: Memoires dedies a Georges de Rham (English and French Edition)
  3. Georges de Rham: An entry from Gale's <i>Science and Its Times</i>
  4. Varietes Differentiables: Formes, Courants, Formes Harmoniques by Georges De Rham, 1960
  5. Differentiable Manifolds: Forms, Currents, Harmonic Forms (Grundlehren der mathematischen Wissenschaften) by Georges de Rham, 1984-09-19
  6. Varietes differentiables: Formes, courants, formes harmoniques (Actualites scientifiques et industrielles) (French Edition) by Georges de Rham, 1973
  7. Harmonic integrals by Georges de Rham, 1954
  8. Varietes Differentiables: Formes, Courants, Formes Hamoniques: La Seconde Edition (Actualites Scientifiques et Industrielles.Publications l'Institute de Mathematique de l'Universite de Nancago III) by Georges De Rham, 1960
  9. Essays on Topology and Related Topics: Memoires dédiés à Georges de Rham by André Haefliger and Raghavan Narasimhan, 1970
  10. Variétés différentiables: Formes, courants, formes harmoniques (Publications de l'Institut mathématique de l'université de Nancago) by Georges de Rham, 1955
  11. Lectures on introduction to algebraic topology, (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 44) by Georges de Rham, 1969
  12. A History of Algebraic and Differential Topology, 1900 - 1960 (Modern Birkhäuser Classics) by Jean Dieudonné, 2009-06-09

41. Annales De L'Institut Fourier
Translate this page georges de rham . p. 51-67 Complexesà automorphismes et homéomorphie différentiable
http://annalif.ujf-grenoble.fr/cgi-bin/auteur?Langue=fre&AuthorName=RHAM&AuthorF

42. Institut De France - Recherche
Translate this page rham georges RHEIMS Maurice RIBAUD Gustave RIBOT Alexandre RIBOT Théodule RICCICorrado RICH Alexander RICHARD Jean RICHARDS Sir Rex RICHEPIN Auguste
http://www.institut-de-france.fr/franqueville/second_siecle/recherche_tome2.htm
L
L
M N O ... Z L L

LABEYRIE Antoine
LABORDE Alexandre
LA BORDERIE Louis
LABRIOLLE Pierre
LABROUSSE Pierre
LACASSAGNE Antoine
LACAU Pierre
LACAZE Marie
LACHELIER Jules LACOMBE Olivier LACOMBE Paul LACOUR-GAYET Jean LACOUR-GAYET Jules LACRETELLE Amaury LAFENESTRE Georges LAFFITTE Paul LA FORCE Auguste LA GORCE Pierre LAIR Jules LA LANDE de CALAN Pierre LALAOUNIS Ilias LALLEMAND Jean-Pierre LALOUX Victor LALOY Jean LAMBERT LANDOUZY Louis LANDOWSKI Marcel LANDOWSKI Paul LANGERON Roger LANGEVIN Paul LANGFORS Arthur LANGLOIS Charles-Victor LANGLOIS Christian LANGLOIS Hippolyte LANKESTER Sir Edwin Ray LANNELONGUE Odilon LANTIER Raymond LAOUST Henri LAPICQUE Louis LAPIE Pierre-Olivier LAPORTE Yves LAPPARENT Albert LAPRADE Albert LAROCHE Emmanuel LARROUMET Louis LASTEYRIE DU SAILLANT Robert LATARJET Raymond

43. Enciclopedia 100cia.com
Translate this page El teorema de de rham, probado por georges de rham en 1931, establece que parauna variedad diferenciable compacta orientable M, estos grupos son isomorfos
http://100cia.com/enciclopedia/Cohomología_de_De_Rham

44. PSIgate Timeline - Science From 1926 - 1950
1931phys georges de rham starts work on his theorem in cohomology and characteristicclasses. 1932phys Carl Anderson discovers the positron,
http://www.psigate.ac.uk/newsite/science_timeline8.html

45. Transactions Of The American Mathematical Society
deR georges de rham, Differentiable Manifolds, Springer, Berlin, 1984.MR 85m58005. Sh Ichiro Shigekawa, de rhamHodge-Kodaira s decomposition on an
http://www.ams.org/tran/1999-351-02/S0002-9947-99-02021-8/home.html

ISSN 1088-6850(e) ISSN 0002-9947(p) Previous issue Table of contents Next issue
Articles in press
... All issues The heat kernel weighted Hodge Laplacian on noncompact manifolds Author(s): Edward L. Bueler
Journal: Trans. Amer. Math. Soc.
MSC (1991): Primary 58A14, 35J10, 58G11
Retrieve article in: PDF DVI TeX PostScript
This article is available free of charge Abstract References Similar articles Additional information ... Forward Citations Abstract: On a compact orientable Riemannian manifold, the Hodge Laplacian has compact resolvent, therefore a spectral gap, and the dimension of the space of harmonic -forms is a topological invariant. By contrast, on complete noncompact Riemannian manifolds, is known to have various pathologies, among them the absence of a spectral gap and either ``too large'' or ``too small'' a space . In this article we use a heat kernel measure to determine the space of square-integrable forms and to construct the appropriate Laplacian . We recover in the noncompact case certain results of Hodge's theory of in the compact case. If the Ricci curvature of a noncompact connected Riemannian manifold

46. Proceedings Of The American Mathematical Society
georges de rham, Springer (1970), 1828 MR 0278334 (434064). 2. MF Atiyah andIM Singer, The index of elliptic operators. I, Ann. of Math.
http://www.ams.org/proc/0000-000-00/S0002-9939-05-07928-1/home.html

47. Hermann, Editeur Des Sciences Et Des Arts
Translate this page Hermann Editeurs des sciences et des arts. georges de rham, UNIVERSITÉ de GENÈVEVariétés différentiables GÉOMÉTRIE DIFFÉRENTIELLE
http://www.hermann-editeurs.com/article.php3?id_article=223

48. Georges De Rham Université Montpellier II
Translate this page georges de rham (1903-1990). Cette image et la biographie complète en anglaisrésident sur le site de l’université de St Andrews Écosse
http://ens.math.univ-montp2.fr/SPIP/article.php3?id_article=1038

49. Georges De Rham
Translate this page georges de rham (September 10 1903 - Oktober 9 1990) war ein schweizer Mathemat.
http://www.yotor.com/wiki/de/ge/Georges de Rham.htm
Yotor Facts Yotor faits Yotor Tatsachen Yotor hechos
Georges de Rham
Georges de Rham (September 10 1903 - Oktober 9 1990) war ein schweizer Mathematiker, bekannt für seine Beiträge zur differentialen Topologie. Er studierte an der Universität von Lausanne und dann in Paris für ein Doktorat und wurde ein Lektor in Lausanne 1931; wo er gehaltene Positionen bis Ruhestand 1971; er gehaltene Positionen in Genf in der Ähnlichkeit. 1931 prüfte er de Rhams das Theorem und kennzeichnete die de Rham cohomology Gruppen als topologische invariants. Dieser Beweis kann wie suchen-nach betrachtet werden, da das Resultat in den Punkten der Ansicht von Henri Poincaré und Élie Cartan implizit war. Der erste Beweis des Generals schürte Theorem, z.B. wird Poincaré, 1899 zugeschrieben. Zu der Zeit als es keine cohomology Theorie gab, könnte man angemessen sagen: für Verteilerrohre bekannt die Homologietheorie, um mit dem Schalter des Maßes zum codimension C$selbst-doppel zu sein (das heißt, von H k bis H n-k , wo

50. Symmetries Of Period-Doubling Maps
Thist paper includes a very breif review of georges derham s 1958 constructionof the In 1958, georges de rham considered the iteration of generalized
http://linas.org/math/chap-takagi/chap-takagi.html
Symmetries of Period-Doubling Maps
Date: 12 October 2004 (revised 3 July 2005)
Abstract:
The concept of self-similarity is central to the notion of a fractal, but the actual symmetry group that generates that self-similarity is oddly rarely named, and it seems fractals are almost never studied according to their symmetries. Yet, in other branches of mathematics and physics, it is well understood that symmetry provides a powerful mechanism for understanding systems. Indeed, for dynamical systems, symmetries lead to conserved quantum numbers and conserved currents. In this paper, we identify the symmetry group of period-doubling maps as being a semigroup subgroup of the Modular Group . To anchor this assertion, we work out an explicit, exactly-solvable fractal curve, the Takagi or Blancmange Curve, as transforming under the three-dimensional representation of the (semigroup of the) Modular Group. By replacing the triangular shape that generates the Blancmange curve with a polynomial, we find that the resulting curve transforms under the n+2 dimensional representation of the semigroup, where n is the degree of the polynomial. We also find that the (ill-defined) derivative of the Blancmange curve is essentially the (inverse of the) Cantor function, thus demonstrating the semigroup symmetry on the Cantor Set as well. In fact, any topologically conjugate map will transform under the three-dimensional representation. We then show how all period-doubling maps can demonstrate the semigroup symmetry, which is essentially an outcome of the dyadic representation of the semigroup.

51. Bibliography
deR57 georges de rham, On Some Curves defined by Functional Equations (1957),reprinted in Classics on Fractals, ed. Gerald A. Edgar, (AddisonWesley,
http://linas.org/math/chap-gkw/node9.html
Up: The Bernoulli Operator, the Previous: Conclusions
Bibliography
asdf
Here is a very similarly titled paper with a very different subject matter: Continued Fractions and Chaos http://www.cecm.sfu.ca/organics/papers/corless/confrac/html/confrac.html by Robert M. Corless
Dean Driebe, Fully Chaotic Maps and Broken Time Symmetry, 1999, Kluwer Academic Publishers
Benoit Mandelbrot, in The Science of Fractal Images, ed. Heinz-Otto Peitgen, Dietmar Saupe, (Springer-Verlag, 1988) p. 246
Georges de Rham, On Some Curves Defined by Functional Equations (1957), reprinted in Classics on Fractals, ed. Gerald A. Edgar , (Addison-Wesley, 1993) pp. 285-298
P. Gaspard, r-adic one-dimensional maps and the Euler summation formula , 1992, Journal of Physics A: Mathematical and General, vol. 25, L483-485.
H. M. Edwards, Riemann's Zeta Function, 1972, (Dover Publications, New York) pp. 13ff
Stefano Isola, On the Spectrum of Farey and Gauss Maps , preprint, undated (2004 or earlier)
Tom M. Apostol, Introduction to Analytic Number Theory , 1976, (Springer-Verlag, New York)

Linas Vepstas 2005-01-02

52. Georges De Rham - Wikipedia
Translate this page NAME, rham, georges de. ALTERNATIVNAMEN. KURZBESCHREIBUNG, Schweizer Mathematiker.GEBURTSDATUM, 10. September 1903. GEBURTSORT. STERBEDATUM, 9.
http://de.wikipedia.org/wiki/Georges_de_Rham
Wikimedia braucht Ihre Hilfe Helfen Sie uns, 200.000$ zu sammeln, damit Wikipedia und ihre Schwesterprojekte auch weiterhin kostenlos und werbefrei der Allgemeinheit zur Verf¼gung stehen. Weitere Informationen auf unserer Spenden-Seite
Georges de Rham
aus Wikipedia, der freien Enzyklop¤die
Georges de Rham 10. September 9. Oktober ) war ein Schweizer Mathematiker Nach einem Studium in Lausanne und Paris lehrte er in Lausanne und gleichzeitig Genf gelang ihm der damals schwierige Beweis der Homotopieinvarianz der nach ihm benannten Kohomologie , die schon von Henri Poincar© und ‰lie Cartan vermutet worden war. Der Differentialtopologie blieb er auch weiterhin treu. Bearbeiten
Werke
  • Sur l'analysis situs des vari©t©s   n dimensions. (Diss.) Paris, 1931 . Paris [engl.:] Differentiable Manifolds: Forms, Currents, Harmonic Forms . Berlin, 1984. (Grundlehren Math. Wiss.; 266) ISBN 3-540-13463-8 [Sammlung:] Œuvres math©matiques [Festschrift:] (A. Haefliger and R. Narasimhan, eds.). Berlin, 1970. Lausanne, 1944.
Bearbeiten
Weblinks

53. Paul S Publications
7 On the zeroes of meromorphic vector fields, (with R. Bott), Essays onTopology and Related Topics, Mémoires dédies à georges de rham, 2947.
http://www.math.psu.edu/baum/publications.html

54. Encyclopedia: De Rham Cohomology
de rham s theorem, proved by georges de rham in 1931, states that for a compactoriented smooth manifold M, the groups HkdR(M) are isomorphic as real vector
http://www.nationmaster.com/encyclopedia/De-Rham-cohomology

Supporter Benefits
Signup Login Sources ... Pies
Related Articles People who viewed "De Rham cohomology" also viewed:
  • Hodge theory
  • Betti number
  • W. V. D. Hodge
  • Algebraic topology ...
  • Leicester Square What's new?
  • Our next offering Latest newsletter Student area Lesson plans
  • Recent Updates
  • Romney Marsh Roman Empire Rita Warkov Ricin ...
  • More Recent Articles Top Graphs
  • Richest Most Murderous Most Taxed Most Populous ...
  • More Stats
    Encyclopedia: De Rham cohomology
    Updated 107 days 6 hours 39 minutes ago. Other descriptions of De Rham cohomology In mathematics de Rham cohomology is a tool belonging both to algebraic topology and to differential topology , capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes . It is a cohomology theory based on the existence of differential forms with prescribed properties. It is in different, definite senses dual both to singular homology , and to Alexander-Spanier cohomology Mathematics, often abbreviated maths in Commonwealth English and math in American English, is the study of abstraction. ... Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces. ...

    55. Encyclopedia: Georges De Rham
    Ces mémoires sontautant de jalons dans la carrière de georges de rham (19031990),
    http://www.nationmaster.com/encyclopedia/Georges-de-Rham

    Supporter Benefits
    Signup Login Sources ... Pies
    Related Articles People who viewed "Georges de Rham" also viewed:
  • De Rham theorem
  • Moment problem
  • Theodore Beza
  • Conrad Gessner ...
  • Sir Hans Adolf Krebs What's new?
  • Our next offering Latest newsletter Student area Lesson plans
  • Recent Updates
  • Romney Marsh Roman Empire Rita Warkov Ricin ...
  • More Recent Articles Top Graphs
  • Richest Most Murderous Most Taxed Most Populous ...
  • More Stats
    Encyclopedia: Georges de Rham
    Updated 203 days 14 minutes ago. Other descriptions of Georges de Rham Georges de Rham 10 September 9 October ) was a Swiss mathematician , known for his contributions to differential topology He studied at the University of Lausanne and then in Paris for a doctorate, becoming a lecturer in Lausanne in 1931; where he held positions until retirement in 1971; he held positions in Geneva in parallel. In 1931 he proved de Rham's theorem , identifying the de Rham cohomology groups as topological invariants. This proof can be considered as sought-after, since the result was implicit in the points of view of Henri Poincaré and Élie Cartan . The first proof of the general Stokes' theorem , for example, is attributed to Poincaré, in 1899. At the time there was no

    56. Liste_der_Biographien/Def-Dek
    georges de rham georges de rham (*10. September 1903 ; † 9. Oktob; Georgi Filippowitsch Baidukow Georgi
    http://toshare.dynup.net/w/de/1046.htm
    Liste_der_Biographien/Def-Dek

    57. Biographie De Georges Simenon
    rham pour vendre Épalinges et le
    http://www.0faute.com/bio1972.htm
    Sommaire Plan du site Contact Vous cherchez ? ... Les liens LIVRES Sur le site 0Faute News 0Faute News , les archives la protection des personnes et nos élus et le Net Partenaires
    Georges Simenon
    Biographie
    retour
    romancier par celle de sans profession
    Le 7 février, le quotidien "24 heures - Feuille d'avis de Lausanne" publie une interview d'Henri-Charles Tauxe où Simenon explique pourquoi il a pris la décision de ne plus écrire. L'article a été repris dans « Paris-Match » (n° 1241 du 17 février 1973) sous le titre : Simenon : « J'ai septante ans, c'est fini, je tue Maigret...».
    La "une" du quotidien 24 heures le 7 février 1973
    Le 13 février, pour son 70ème anniversaire, il s'offre un petit magnétophone. Il va dès lors dicter "Un homme comme les autres", la première de ses 21 dictées.
    retour

    : En Février, il déménage pour sa 33ème et dernière demeure. C'est de loin celle où il aura séjourné le plus longtemps : quinze ans et demi.. C'est une petite maison du XVIIIème avec un énorme cèdre de 250 ans dans le jardin, située dans une rue étroite et provinciale (12 avenue des Figuiers), à 100 mètres de l'immeuble où il conserve son appartement. Il l'appelle "notre petite maison rose" et y mène une existence en apparence très simple avec Thérésa.

    58. Collected Works
    MAIN TITLE Oeuvres mathematiques / georges de rham. PUBLISHER Geneve L Enseignement mathematique, Universite de Geneve, LOCATION Branson
    http://lib.nmsu.edu/subject/math/mbib.html
    C OLLECTED W ORKS F M ATHEMATICIANS B IBLIOGRAPHY
    CALL NO: QA3 A14 1881
    AUTHOR: Abel, Niels Henrik, 1802-1829.
    MAIN TITLE: OEuvres completes de Niels Henrik Abel.
    EDITION: Nouv. ed., publiee aux frais de l'etat norve-gien par L. Sylow
    PUBLISHER: Christiania [Sweden] Grondahl, 1881.
    LOCATION: Branson
    Material: 2 v. in 1. 28 cm.
    Contents: t. 1. Memoires publies par Abel.t. 2. Memoires posthumes d'Abel
    Subject: Mathematics. cm
    Added Entry: Sylow, Peter Ludvig Mejdel, 1832-
    Added Entry: Lie, Sophus, 1842-1899. CALL NO: QB3 A2 AUTHOR: Adams, John Couch, 1819-1892. MAIN TITLE: The scientific papers of John Adams Couch, edited by William Grylls
    Adams, with a memoir by J. W. L. Glaisher. PUBLISHER: Cambridge, University press, 1896-1900. LOCATION: Branson V.1 and V.2
    Material: 2 v. front. (port.) fold. map, facsims., diagr. 30 cm.
    Contents: v. 1. Biographical notice, by J. W. L. Glaisher. [Original papers published by the author during his lifetime, 1844-1890, ed. by William Grylls Adams]v. 2. pt. 1. Extracts from unpublished manuscripts, ed. by Ralph Allen Simpson. pt. 2. Terrestial magnetism, ed. by William Grylls Adams.
    Subject: Geomagnetism.

    59. Portraits De Personnages Celebres : DER
    Translate this page de rham (georges). Photo 1. derham (William)(1657-1735). Peinture 1.deRJAVINE (Gavrila)(1743-1816). Peinture 1. deRKOVITS (Gyula)
    http://www.onlipix.com/personnages/der.htm
    DER A B C D ... Z
    • Peinture /3 (en 1939, avec sa famille)
  • DERBY (Charlotte, femme du comtesse de
      Peinture
  • DERBY (Edith, petite-fille de
      Photo de groupe
  • DERBY (Edward STANLEY,
      Peinture
  • DERBY (Edward STANLEY,
      Peinture
  • DERBY (Edward STANLEY,
      Peinture
  • DERBY (Edward Smith STANLEY,
      Peinture
  • DERBY (Elizabeth, femme du comtesse de
      Peinture
  • DERBY (George Horatio)(1823-1861)
      Photo
  • DERBY (Henry STANLEY,
      Peinture
  • DERBY (James STANLEY,
      Peinture
  • DERBY (James STANLEY,
      Peinture
    • DERBYSHIRE (Minerva)
        Photo
    • DE REMER (Rubye)
        Photo
    • DEREURE (Louis Simon)(1838-1900)
        Photo (A)/ (A)
    • DERFFLINGER (Georg von,
        Peinture
        Dessin
    • DE RHAM (Georges)
        Photo
    • DERHAM (William)(1657-1735)
        Peinture
    • DERJAVINE (Gavrila)(1743-1816)
        Peinture
    • DERKOVITS (Gyula)
        Dessin (en 1921)/ (en 1926)
    • DERN (George H.)(1872-1936)
        Photo
    • DERNBURG (Bernhard)
    • DERNBURG (Henri)
    • DE ROBECK (Sir John Michael, amiral, Bt
        Peinture
    • DE ROBERTO (Federico)
    • DE ROCHE (Charles)
        Photo
    • DEROCHE (Elise, dite 'la baronne de LAROCHE')(1886-1919)
  • 60. Person Georges De Rham
    Personen Wissenschaft Jahre Geschäft Druckwerke Institutionen
    http://www.lrz-muenchen.de/~Sommerfeld/PersDat/03605.html
    Person: Georges de Rham
    Personen Wissenschaft Jahre Druckwerke ... Institutionen

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter