Geometry.Net - the online learning center
Home  - Scientists - De Rham Georges
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         De Rham Georges:     more detail
  1. Varietes differentiables: Formes, Courants, Formes Harmoniques. by Georges de Rham, 1955
  2. Essays on Topology and Related Topics: Memoires dedies a Georges de Rham (English and French Edition)
  3. Georges de Rham: An entry from Gale's <i>Science and Its Times</i>
  4. Varietes Differentiables: Formes, Courants, Formes Harmoniques by Georges De Rham, 1960
  5. Differentiable Manifolds: Forms, Currents, Harmonic Forms (Grundlehren der mathematischen Wissenschaften) by Georges de Rham, 1984-09-19
  6. Varietes differentiables: Formes, courants, formes harmoniques (Actualites scientifiques et industrielles) (French Edition) by Georges de Rham, 1973
  7. Harmonic integrals by Georges de Rham, 1954
  8. Varietes Differentiables: Formes, Courants, Formes Hamoniques: La Seconde Edition (Actualites Scientifiques et Industrielles.Publications l'Institute de Mathematique de l'Universite de Nancago III) by Georges De Rham, 1960
  9. Essays on Topology and Related Topics: Memoires dédiés à Georges de Rham by André Haefliger and Raghavan Narasimhan, 1970
  10. Variétés différentiables: Formes, courants, formes harmoniques (Publications de l'Institut mathématique de l'université de Nancago) by Georges de Rham, 1955
  11. Lectures on introduction to algebraic topology, (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 44) by Georges de Rham, 1969
  12. A History of Algebraic and Differential Topology, 1900 - 1960 (Modern Birkhäuser Classics) by Jean Dieudonné, 2009-06-09

21. Collected Works In Mathematics And Statistics
de rham, georges, 19031990, Oeuvres mathématiques, 1, QA 611.15 R53 1981, Killam.Désargues, Gérard, 1591-1661, The geometrical work of Girard Désargues
http://www.mathstat.dal.ca/~dilcher/collwks.html
Collected Works in Mathematics and Statistics
This is a list of Mathematics and Statistics collected works that can be found at Dalhousie University and at other Halifax universities. The vast majority of these works are located in the Killam Library on the Dalhousie campus. A guide to other locations is given at the end of this list. If a title is owned by both Dalhousie and another university, only the Dalhousie site is listed. For all locations, and for full bibliographic details, see the NOVANET library catalogue This list was compiled, and the collection is being enlarged, with the invaluable help of the Bibliography of Collected Works maintained by the Cornell University Mathematics Library. The thumbnail sketches of mathematicians were taken from the MacTutor History of Mathematics Archive at the University of St. Andrews. For correction, comments, or questions, write to Karl Dilcher ( dilcher@mscs.dal.ca You can scroll through this list, or jump to the beginning of the letter:
A B C D ... X-Y-Z
A
[On to B] [Back to Top]
N.H. Abel

22. Lexikon Georges De Rham
georges de rham aus der freien EnzyklopädieWikipedia und steht unter der GNU Lizenz. Die Liste der Autoren ist
http://lexikon.freenet.de/Georges_de_Rham

E-Mail
Mitglieder Community Suche ... Hilfe document.write(''); im Web in freenet.de in Shopping Branchen Lexikon Artikel nach Themen alphabetischer Index Artikel in Kategorien Weitere Themen
Sexy, sexier, Longoria: Die erotischsten TV-Stars aller Zeiten

Whitney widerlich: Ab ins Klo mit der ekligen TV-Show

IAA: Fords spekta- kul¤res viert¼riges Coup© Iosis

Werden Sie zum Star, der HotVote ist Ihr sexy Start
...
Firefox aufmotzen: Wir pr¤sentieren vier Erweiterungen

Sie sind hier: Startseite Lexikon Georges de Rham
Georges de Rham
Georges de Rham 10. September 9. Oktober ) war ein Schweizer Mathematiker Nach einem Studium in Lausanne und Paris lehrte er in Lausanne und gleichzeitig Genf gelang ihm der damals schwierige Beweis der Homotopieinvarianz der nach ihm benannten Kohomologie , die schon von Henri Poincar© und ‰lie Cartan vermutet worden war. Der Differentialtopologie blieb er auch weiterhin treu. Bearbeiten
Werke
  • Sur l'analysis situs des vari©t©s   n dimensions. (Diss.) Paris, 1931 Vari©t©s diff©rentiables : formes, courants, formes harmoniques . Paris [engl.:]

23. Rham: Remarque Au Sujet De La Théorie Des Formes Différentielles Harmoniques
rham, georges de Remarque au sujet de la théorie des formes différentiellesharmoniques. Annales de l université de Grenoble, 23 (19471948), p. 55-56
http://www.numdam.org/numdam-bin/item?id=AUG_1947-1948__23__55_0

24. Rham: Sur La Théorie Des Formes Différentielles Harmoniques
Sur la théorie des formes différentielles harmoniques rham georges de Dans untravail récent 8 (z), la théorie des formes différentielles harmoniques de
http://www.numdam.org/numdam-bin/item?id=AUG_1946__22__135_0

25. Porto-Riche, Georges De --  Encyclopædia Britannica
georges de rham University of St.Andrews, Scotland Introduction to the life andworks of this Swiss mathematician known for his contributions in de rham
http://www.britannica.com/eb/article?tocId=9060991

26. Inhalt: Epitaph Der Familie Rham Im Bonner Münster
georges de rham attended the secondary school Collège d Aigle from 1914 to 1919and then at the Gymnase classique de Lausanne from 1919 until 1921.
http://www.ramm-familien.de/english/geschichten/georgderham/georgesderham.htm
Georges de Rham
Born: 10 Sept 1903 in Roche, Canton Vaud, Switzerland
Died: 9 Oct 1990 in Lausanne, Switzerland
Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index Georges de Rham attended the secondary school Collège d'Aigle from 1914 to 1919 and then at the Gymnase classique de Lausanne from 1919 until 1921. Having graduated from secondary school with Latin and Greek as his main subjects, de Rham entered the University of Lausanne in 1921 with the intention of studying chemistry, physics and biology. He began to study mathematics in an attempt to understand questions that arose in the physics he was studying. After five semesters he gave up biology and turned to mathematics. In 1925 he obtained his Licence ès Sciences. From 1926 he studied in Paris for his doctorate, spending the winter term of 1930/31 at the University of Göttingen. He was awarded his doctorate from Paris in 1931 and became a lecturer at the University of Lausanne. There he was promoted to extraordinary professor in 1936 and to full professor in 1943. He retired and was given an honorary appointment by Lausanne in 1971. However de Rham also held a position at the University of Geneva. He was appointed there as extraordinary professor in 1936, being promoted to full professor in 1953. He retired from Geneva and was given an honorary position there in 1973.

27. Georges De Rham
Translate this page Begrifferklärung georges de rham. Dieser Artikel basiert auf dem Artikelgeorges de rham (http//de.wikipedia.org/wiki/georges_de_rham) aus der freien
http://www.netzwelt.de/lexikon/Georges_de_Rham.html

28. Bibliography
rham, georges de, 19031990, Oeuvres mathematiques ; georges de rham, Geneve,L Enseignement mathematique, Universite de Geneve, 1981
http://www.library.cornell.edu/math/bibliography/display.cgi?start=R&

29. ICMI Bulletin No. 48, June 2000
georges de rham, L Enseignement Mathématique Revue internationale et laCommission internationale de georges de rham (Switzerland) - President of IMU
http://www.mathunion.org/Organization/ICMI/bulletin/48/EC_08_98.html
    The International Commission on Mathematical Instruction
    ICMI

    Bulletin No. 48

    June 2000
    ICMI Executive Committees 1908-1998
    During the fourth International Congress of Mathematicians, held in Rome in 1908, the following resolution was adopted:
      "The Congress, recognizing the importance of a comparative study on the methods and plans of teaching mathematics at secondary schools, charges Professors F. Klein, G. Greenhill, and Henri Fehr to constitute an International Commission to study these questions and to present a report to the next Congress."

    This resolution was submitted on the initiative of David Eugene Smith, who had suggested the idea of such an international commission three years earlier in the journal L'Enseignement Mathématique, in response to an article by Fehr. It marks the inception of the International Commission on Mathematical Instruction - although the Commission was known in its earlier years as the "International Commission on the Teaching of Mathematics".
    Over the years various Executives Committees of the Commission (first known as "Central Committees") have succeeded one another. The list of their officers and members appears below. This information has been gathered from the following sources:
    • Georges de Rham, "L'Enseignement Mathématique - Revue internationale et la Commission internationale de l'enseignement mathématique (CIEM) - Notice historique", ICMI Bulletin 7 (1976) 29-34.

30. Interventión De Henri Cartan
georges de rham,
http://www.mathunion.org/Publications/Bulletins/39/Cartan.html
    "In fact, Chandra stayed as a member of the E.C. during 24 years. up to 1978. Thanks to him, the Union developed itself in many respects. I want now to give some examples:
  • It was decided that the Union should take the responsibility of the Fields Medals: the Executive Committee nominates the members of the Fields jury, which is chaired by the President of the Union.
  • Chandra believed that the Union should take an effective responsibility in the scientific programm of the international congresses. For this purpose the E.C. nominates a so-called "Consultative Committee" and chooses its chairman; the Consultative Committee is in charge of selecting the chairmen of the panels and also the speakers of one-hour lectures.
  • On the proposal of Chandra it was decided that the retiring President of the Union should stay four years more in the E.C. as "Past President".
  • Chandra took the initiative of the edition, under the responsibility of the Union, of the "World Directory of Mathematicians", which has become very useful.
  • Chandra decided to publish regularly a "Bulletin of the International Mathematical Union"
  • Thanks to Chandra it was decided to create fellowships to help young mathematicians of the Third World to attend some meetings sponsored by the Union.

31. Princeton University Library | Fine Hall Library
R4713 1984, Differentiable manifolds Forms, currents, harmonic forms, de rham,georges. Physics Books 2000, Q325.H35 2000, Information and
http://finelib.princeton.edu/apr00bks.php
Main Menu Campus Libraries Library Home Campus Libraries Research Help Library Services ... Browse Search A-Z back Fine Hall Library, Princeton University
New Books (April 2000) Math or Physics or Other Date of Publication Call Number Title Author Math Books... Number from Ahmes to Cantor Gazale, Midhat Geometric calculus: According to the Ausdehnungslehre of H. Grassmann Peano, Giusepps Growth of algebras and Gelfand-Kirillov dimension Krause, Gunter R Applied functional analysis Aubin, Jean Pierre A course in operator theory Conway, John B. The action principles and partial differential equations Christodoulou, Demetrois Foliations 1 Candel, Alberto QA613.658.S787 2000, v.1, c.4 Surveys on surgery theory, v.1 Cappell, Sylvain QA613.658.S878, v.1, c.3 Surveys on surgery theory, v.1 Cappell,Sylvain Geometric mechanics Talman, Richard Some ideas on information processing, thinking and genetics Temkin, A. Ya. Oriented matroids Bjorner, Andres Integral quadratic forms and lattices: Proceedings of the international conference on integral quadratic forms and lattices: 1998: Seoul,Korea Kim, Myung-Hwan

32. Math Lessons - De Rham Cohomology
de rham s theorem, proved by georges de rham in 1931, states that for a compactoriented smooth manifold M, these groups are isomorphic as real vector
http://www.mathdaily.com/lessons/De_Rham_cohomology
Search
Mathematics Encyclopedia and Lessons
Lessons
Popular Subjects
algebra arithmetic calculus equations ... more
References
applied mathematics mathematical games mathematicians more ... Differential geometry
De Rham cohomology
In mathematics de Rham cohomology is a tool belonging both to algebraic topology and to differential topology , capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes . It is a cohomology theory based on the existence of differential forms with prescribed properties. It is in different, definite senses dual both to singular homology , and to Alexander-Spanier cohomology The differential k -forms on any smooth manifold M form an abelian group (in fact a real vector space ) called
k M
under addition . The exterior derivative d gives mappings
d k M k M
There is a fundamental relationship
d
this follows essentially from symmetry of second derivatives . Therefore vector spaces of k -forms along with the exterior derivative are a cochain complex , the de Rham complex In differential geometry terminology, forms which are exterior derivatives are called

33. MathNet-Fields Medals
25 de rham, georges; Kodaira, Kunihiko Harmonic Integrals. Institute for AdvancedStudy, Princeton, N. J., 1950. iii+114 pp. 14.0X.
http://www.mathnet.or.kr/API/?MIval=people_fields_detail&ln=Kunihiko Kodaira

34. De Rham Cohomology
de rham s theorem, proved by georges de rham in 1931, states that for a compactoriented smooth manifold M, the groups HkdR( M ) are isomorphic as real
http://de-rham-cohomology.iqnaut.net/
home Archive CONTACT
De Rham cohomology
In mathematics de Rham cohomology is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. It is in different, definite senses dual both to singular homology , and to Alexander-Spanier cohomology
Definition
The set of smooth, differentiable differential k -forms on any smooth manifold M form an abelian group (in fact a real vector space k (''M'') under addition . The exterior derivative d k k (''M''). There is a fundamental relationship :''d'' = 0; this follows essentially from symmetry of second derivatives . Therefore vector spaces of k -forms along with the exterior derivative are a cochain complex, the de Rham complex In differential geometry terminology, forms which are exterior derivatives are called exact and forms whose exterior derivatives are are called closed (see closed and exact differential forms ); the relationship

35. Members Of The School Of Mathematics
de rham, georges, 194950, 1957-58. de WET, Jacobus S. 1938-40. deBEVER, Robert,1947-48. dedeCKER, Paul, 1957-58, 1983-84. deGOND, Pierre, 1994-95
http://www.math.ias.edu/dnames.html
DAFNI, Galia DAI, Xianzhe DALLA VOLTA, Vittorio DANCHIN, Raphaël D'ANGELO, John P. DANI, Shrikrishna G. DANKNER, Alan DANSKIN, John M., Jr. DAR, Aparna DASKALOPOULOS, Georgios DASKALOPOULOS, Panagiota D'ATRI, Joseph E. DAUBECHIES, Ingrid DAVIDS, Norman DAVIDSON, Morley DAVIES, Edward B. DAVIS, Donald M. DAVIS, Horace C. DAVIS, Martin D. DAVIS, Michael DAWSON, John W., Jr. DAY, Jane DAY, Mahlon M. De SAPIO, Rodolfo V. de BARTOLOMEIS, Paolo de BRANGES, Louis de CATALDO, Mark de FARIA, Edson de la LLAVE, Rafael de la TORRE, Pilar de LEEUW, Karel de LYRA, Carlos B. de RHAM, Georges de WET, Jacobus S. DEBEVER, Robert DEDECKER, Paul DEGOND, Pierre DEHEUVELS, René DEIFT, Percy A. DEKKER, Jacob C.E. del PINO, Manuel DELANGE, Hubert DELIGNE, Pierre DELLACHERIE, Claude DELLAPIETRA, Stephen A. DELLAPIETRA, Vincent DELSARTE, Jean DENEF, Jan J. DENISSOV, Serguei DENNIS, R. Keith DENY, Jacques DEODHAR, Vinay Vithal DESER, Stanley DESHOUILLERS, Jean-Marc DE TURCK, Dennis DEURING, Max DEVINATZ, Allen deWITT, B.S. DI PERNA, Ronald J. DIACONU, Calin DIAMOND, Fred DIAMOND, Harold G.

36. Members Of The School Of Mathematics
Translate this page de rham, georges dedeCKER, Paul deKKER, Jacob CE deNY, Jacques DOLD, AlbrechtDUBINS, Lester E. DVORETZKY, Aryeh FEdeRER, Herbert FRANKEL, Theodore T.
http://www.math.ias.edu/1955.html
ANDERSON, Richard D.
ATIYAH, Michael F.
ATKINSON, Frederick V.
AUSLANDER, Louis
BITTERMAN, M.E.
BOONE, William W.
BOTT, Raoul
BREMERMANN, Hans J.
BURKILL, John C.
CALABI, Eugenio
CHARNEY, Jule G. CHEN, Yu Why CHOQUET, Gustave CHOVER, Joshua CONNER, Pierre E. DANSKIN, John M., Jr. DENY, Jacques EELLS, James, Jr. EHRENPREIS, Leon FELDMAN, Jacob FOURÈS, Léonce FOURÈS, Yvonne FROELICHER, Alfred V. HARISH-CHANDRA, HELD, Richard M. HELLER, Alex HEWITT, Edwin HOUSEHAM, Keith O. IT, Kiyosi JAMES, Ioan M. KALISCH, Gerhard K. KAPLAN, Lewis D. KELLY, Paul J. KODAIRA, Kunihiko KÖHLER, Wolfgang KREISEL, Georg KURANISHI, Masatake KURODA, Sigekatu LERAY, Jean MARTIN, Allan D. MAUTNER, Friederich I. NAKANO, Shigeo NAKAYAMA, Tadasi OLUM, Paul PAPAKYRIAKOPOULOS, Christos D. PAPY, Georges L.S. REINER, Irving ROELCKE, Walter O.P. ROQUETTE, Peter ROSENBERG, Alex SCOTT, William R. SERRE, Jean-Pierre SHAPIRO, Arnold S. SINGER, Isadore M. SION, Maurice STEINBERG, Maria Alice

37. Combinatorial Approximation To The Divergence Of One-Forms On Surfaces
92 (1984), 405454. de rham, georges, Variétés différentiables, Hermann, Paris1960. Dodziuk, Józef, Finite-difference Approach to the Hodge Theory of
http://www.ster.be/lieven/pub/pub4.html
Combinatorial Approximation to the Divergence of One-Forms on Surfaces
Author
Lieven Smits
Bibliographical Reference
Israel Journal of Mathematics , volume 75 (1991), pages 257-271.
Abstract
We consider the approximation of a differential operator on forms by combinatorial objects via the correspondences of Whitney and de Rham. We prove that the Hilbert space dual of the combinatorial coboundary is an L approximation to the codifferential of one-forms on a two-dimensional Riemannian manifold.
Availability
The author has some reprints left. If your library does not have this particular journal issue, ask for a reprint by emailing him your postal address. Remove "unwanted" from the address below. lieven@sterunwanted.be
References
  • Albeverio, Sergio and Zegarlinski, Boguslaw , Construction of Convergent Simplicial Approximations of Quantum Fields on Riemannian Manifolds, University of Bochum preprint SFB 237, 1989. Cheeger, J., Analytic Torsion and Reidemeister Torsion, Proc. Nat. Acad. Sci. USA Schrader, Robert , On the Curvature of Piecewise Flat Spaces, Comm. Math. Phys.
  • 38. A Timeline Of Mathematics And Theoretical Physics
    1931, georges de rham goes to work on his famous theorem in cohomology andcharacteristic classes, results that would become very important in string theory
    http://superstringtheory.com/history/history3.html
    The Official String Theory Web Site History before 1800 / 1900 until today) Max Planck makes his quantum hypothesis that energy is carried by indistinguishable units called quanta , rather than flowing in a pure continuum. This hypothesis leads to a successful derivation of the black body radiation law, now called Planck's Law, although in 1901 the quantum hypothesis as yet had no experimental support. The unit of quantum action is now called Planck's constant. Swiss patent clerk Albert Einstein proposes Planck's quantum hypothesis as the physics underlying the photoelectric effect. Planck wins the Nobel Prize in 1918, and Einstein in 1921, for developing quantum theory, one of the two most important developments in 20th century physics. Einstein publishes his simple, elegant Special Theory of Relativity, making mincemeat of his competition by relying on only two ideas: 1. The laws of physics are the same in all inertial frames, and 2. The speed of light is the same for all inertial observers. Minkowski publishes Raum und Zeit (Space and Time), and establishes the idea of a spacetime continuum

    39. Golem.de - Lexikon
    Translate this page Dieser Artikel basiert auf dem Artikel georges de rham aus der freien EnzyklopädieWikipedia und steht unter der GNU Lizenz für freie Dokumentation.
    http://lexikon.golem.de/Georges_de_Rham
    News Forum Archiv Markt ... Impressum Lexikon-Suche Lizenz Dieser Artikel basiert auf dem Artikel Georges de Rham aus der freien Enzyklopädie Wikipedia und steht unter der GNU Lizenz für freie Dokumentation . In der Wikipedia ist eine Liste der Autoren verfügbar, dort kann man den Artikel bearbeiten Letzte Meldungen Intel plant Sicherheitsfunktionen mit Vanderpool Western Digital bekommt neuen CEO ... Originalartikel
    Lexikon: Georges de Rham
    Georges de Rham 10. September 9. Oktober ) war ein Schweizer Mathematiker Nach einem Studium in Lausanne und Paris lehrte er in Lausanne und gleichzeitig Genf gelang ihm der damals schwierige Beweis der Homotopieinvarianz der nach ihm benannten Kohomologie , die schon von und vermutet worden war. Der Differentialtopologie blieb er auch weiterhin treu.
    Werke
    • (Diss.) Paris, 1931 . Paris [engl.:] Differentiable Manifolds: Forms, Currents, Harmonic Forms . Berlin, 1984. (Grundlehren Math. Wiss.; 266) ISBN 3-540-13463-8 [Sammlung:] [Festschrift:] (A. Haefliger and R. Narasimhan, eds.). Berlin, 1970. Lausanne, 1944.

    40. Annales De L'Institut Fourier
    georges de rham . p. 5167 Complexeswith automorphisms and differentiable homeomorphy
    http://annalif.ujf-grenoble.fr/cgi-bin/auteur?Langue=eng&AuthorName=RHAM&AuthorF

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 2     21-40 of 93    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter