Geometry.Net - the online learning center
Home  - Scientists - Cavalieri Bonaventura
e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 100    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Cavalieri Bonaventura:     more books (26)
  1. Elogio Di Bonaventura Cavalieri Recitato (1844) (Italian Edition) by Gabrio Piola, 2010-09-10
  2. Elogj Di Galileo Galilei E Di Bonaventura Cavalieri [By P. Frisi]. (Italian Edition) by Paolo Frisi, 2010-01-10
  3. Elogio Di Bonaventura Cavalieri, Con Note, Postille Matematiche, Ec (Italian Edition) by Gabrio Piola, 2010-04-03
  4. Sfera Astronomica Del Padre Bonaventvra Cavalieri ...: Con L'vso Della Figura, E Prattiche Di Essa (Italian Edition) by Bonaventura Cavalieri, 2010-04-03
  5. Carteggio (Archivio della corrispondenza degli scienziati italiani) (Italian Edition) by Bonaventura Cavalieri, 1987
  6. Della vita e della corrispondenza scientifica e letteraria di Cesare Marsili con Galileo Galilei e Padre Bonaventura Cavalieri: discorso letto all'Accademia ... delli 21 Novembre 1850 (Italian Edition) by Paolo. Predieri, 1852-01-01
  7. Elogj Di Galileo Galilei E Di Bonaventura Cavalieri (1778) (Italian Edition) by Paolo Frisi, 2009-02-16
  8. Sfera Astronomica Del Padre Bonaventura Cavalieri (1690) (Italian Edition) by Bonaventura Cavalieri, Urbano Aviso, et all 2009-05-10
  9. Bonaventura Cavalieri: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2001
  10. Person (Mailand): Silvio Berlusconi, Bonaventura Cavalieri, Mario Merz, Ambrosius von Mailand, Nino Rota, Vittorio Hösle, Maurizio Bianchi (German Edition)
  11. Elogj Di Galileo Galilei E Di Bonaventura Cavalieri (1778) (Italian Edition) by Paolo Frisi, 2010-09-10
  12. Sfera Astronomica Del Padre Bonaventura Cavalieri (1690) (Italian Edition) by Bonaventura Cavalieri, Urbano Aviso, et all 2010-09-10
  13. Elogj Di Galileo Galilei E Di Bonaventura Cavalieri (1778) (Italian Edition) by Paolo Frisi, 2010-09-10
  14. Sfera Astronomica Del Padre Bonaventura Cavalieri (1690) (Italian Edition) by Bonaventura Cavalieri, Urbano Aviso, et all 2010-09-10

1. Bonaventura Cavalieri (1598 - 1647)
Bonaventura Cavalieri (1598 1647) From `A Short Account of the History of Mathematics' (4th edition, 1908) by W. W. Rouse Ball.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

2. Bonaventura Cavalieri (1598-1647)
Born in Milan, Cavalieri joined the rather small Jesuit religious order as a boy of 15. At the age of 23, he took up an intensive study of
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

3. The Galileo Project Science Bonaventura Cavalieri
Cavalieri Bonaventura Cavalieri Bonaventura Cavalieri (1598?1647) Born Francesco Cavalieri, in Milan, Cavalieri took the name Bonaventura
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

4. The Galileo Project
This catalog is a collection of 631 detailed biographies on members of the scientific community during the 16th and 17th centuries with vital facts
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

5. Cavalieri, Francesco Bonaventura. The Columbia Encyclopedia, Sixth
Cavalieri, Francesco Bonaventura. The Columbia Encyclopedia, Sixth Edition. 200105
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

6. Bonaventura Cavalieri (1598-1647), Allievo Di Galileo E Professore
Bonaventura Cavalieri (15981647), allievo di Galileo e professore in un liceo di Bologna, fu influenzato da Keplero e da Galileo e spinto da
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

7. Cavalieri, Bonaventura
Bonaventura Cavalieri. Italian mathematician, b. at Milan in 1598;
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

8. Cavalieri, Bonaventura Francesco
Bonaventura Francesco Cavalieri
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

9. Cavalieri, Bonaventura Encyclop Dia Britannica
Cavalieri, Bonaventura Italian mathematician who made developments in geometry that were precursors to integral calculus.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

10. CAVALIERI Bonaventura
Translate this page cavalieri bonaventura (1598-1647). Matemático italiano nacido en Milán y fallecidoen Bolonia. Fue discípulo de Galileo y escribió sobre diversos aspectos
http://almez.pntic.mec.es/~agos0000/Cavalieri.html
CAVALIERI Bonaventura (1598-1647)

11. CAVALIERI Bonaventura
cavalieri bonaventura (15981647) Matem tico italiano nacido en Mil n y fallecido en Bolonia.
http://tmsyn.wc.ask.com/r?t=an&s=hb&uid=24312681243126812&sid=343126

12. Principio De Cavalieri - Fórmula Do Volume Da Esfera - Aplicando Principio De C
Translate this page *cavalieri bonaventura (1598-1647). Matemático italiano nascido em Milão e falecidoem Bolonha. Foi discípulo de Galileo e escreveu sobre diversos aspectos
http://members.tripod.com/caraipora/cavprin.htm
setAdGroup('67.18.104.18'); var cm_role = "live" var cm_host = "tripod.lycos.com" var cm_taxid = "/memberembedded"
Search: Lycos Tripod Murderball Share This Page Report Abuse Edit your Site ... Next PRINCIPIO DE CAVALIERI CAVALIERI Bonaventura (1598-1647) B DA ESFERA E CILINDRO *CAVALIERI Bonaventura (1598-1647)
soma de infinitos indivisiveis".

13. Carteggio - Cavalieri Bonaventura
Translate this page Autore, cavalieri bonaventura. Prezzo, EURO 38,00. Dati, 272 p., ill. (cur.Baroncelli G.) Anno, 1987. Editore, Olschki
http://www.internetbookshop.it/ser/serdsp.asp?be=zu&isbn=8822235258

14. La Ricerca
VIA cavalieri bonaventura Translate this page VIA cavalieri bonaventura negozi a Milano. 02/55195772. via Chiesa 6 MetodoMunari. via cavalieri bonaventura 6 20121 Milano tel. 02/6555890
http://www.internetbookshop.it/ser/serpge.asp?Type=ExactAuthor&Search=Cavalieri

15. Bonaventura Cavalieri
Bonaventura Cavalieri was born in Milan in 1598, became a Jesuat (not a Jesuit,as is frequently incorrectly stated) at the age of fifteen, studied under
http://library.thinkquest.org/27694/Bonaventura Cavalieri.htm
Bonaventura Cavalieri (1598-1647 A.D.) Bonaventura Cavalieri was born in Milan in 1598, became a Jesuat (not a Jesuit, as is frequently incorrectly stated) at the age of fifteen, studied under Galileo, and served as a professor of mathematics at the age of forty-nine. He was one of the most influential mathematicians of his time and wrote a number of works on mathematics, optics, and astronomy. He was largely responsible for the early introduction of logarithms into Italy. But his greatest contribution to mathematics was a treatise, Geometria indivisibilibus, published in its first form in 1635, devoted to the precalculus method of indivisibles. Though the method can be traced back to Democritus (circa 450B.C.) and Archimedes (circa 287-212 B.C.), very likely it was Kepler’s attempts to find certain areas and volumes that directly motivated Cavalieri. Cavalieri’s treatise is verbose and not clearly written, and it is difficult to know precisely what is to understood by an “indivisible”. It seems that an indivisible of a given planar piece is a chord of that piece, and an indivisible of a given solid is a plane section of that solid. A planar piece is considered as made up of an infinite set of parallel chords and a solid as made up of an infinite set of parallel plane sections. Now, Cavalieri argued, if we slide each member of the set of parallel chords of some given planar piece along its own axis, so that the end points of the chords still trace a continuous boundary, then the area of the new planar piece so formed is the same as that of the original planar piece, inasmuch as the two pieces are made up of the same chords. A similar sliding of the members of a set of parallel planar sections of a given solid will yield another solid having the same volume as the original one. This last result can be strikingly illustrated by taking a vertical stack of cards and then pushing the sides of the stack into curving surfaces; the volume of the disarranged stack is the same as that of the original stack. These results, slightly generalized, give the so-called Cavalieri principles:

16. Bonaventura Cavalieri - Wikipedia
Translate this page Bonaventura Cavalieri arbeitete auf dem Gebiet der Geometrie und lehrte in Bologna.Seine Berechnungen von Oberflächen und Volumina nehmen Methoden der
http://de.wikipedia.org/wiki/Prinzip_von_Cavalieri
Wikimedia braucht Ihre Hilfe Helfen Sie uns, 200.000$ zu sammeln, damit Wikipedia und ihre Schwesterprojekte auch weiterhin kostenlos und werbefrei der Allgemeinheit zur Verf¼gung stehen. Weitere Informationen auf unserer Spenden-Seite
Bonaventura Cavalieri
aus Wikipedia, der freien Enzyklop¤die
(Weitergeleitet von Prinzip von Cavalieri Bonaventura Cavalieri Bonaventura Francesco Cavalieri oder wahrscheinlich in Mailand 3. Dezember oder 30. November in Bologna ) war ein italienischer M¶nch Mathematiker und Astronom Bonaventura Cavalieri arbeitete auf dem Gebiet der Geometrie und lehrte in Bologna. Seine Berechnungen von Oberfl¤chen und Volumina nehmen Methoden der Infinitesimalrechnung voraus. Bekannt wurde Cavalieri haupts¤chlich durch das Prinzip der Indivisibilien . Dieses Prinzip war von in einer Vorform bereits und von Kepler verwendet worden. Nach der fr¼hen Version von wird angenommen, dass eine Linie aus einer unendlichen Zahl von Punkten ohne Gr¶Ÿe besteht, eine Oberfl¤che aus einer unendlichen Zahl von Linien ohne Breite und ein K¶rper aus einer unendlichen Zahl von Oberfl¤chen ohne H¶he. Als Reaktion auf Einw¤nde wurde das Prinzip neu formuliert und mit einer Verteidigung der Theorie neu ver¶ffentlicht;

17. Cavalieri
Bonaventura Cavalieri joined the religious order Jesuati in Milan in 1615 whilehe was still a boy. In 1616 he transferred to the Jesuati monastery in Pisa.
http://homepages.compuserve.de/thweidenfeller/mathematiker/Cavalieri.htm
Bonaventura Francesco Cavalieri
Born: 1598 in Milan, Duchy of Milan, Habsburg Empire (now Italy)
Died: 30 Nov 1647 in Bologna, Papal States (now Italy)
Bonaventura Cavalieri joined the religious order Jesuati in Milan in 1615 while he was still a boy. In 1616 he transferred to the Jesuati monastery in Pisa. His interest in mathematics was stimulated by Euclid 's works and after meeting Galileo , considered himself a disciple of the astronomer. The meeting with Galileo was set up by Cardinal Federico Borromeo who saw clearly the genius in Cavalieri while he was at the monastery in Milan. In Pisa, Cavalieri was taught mathematics by Benedetto Castelli, a lecturer in mathematics at the University of Pisa. He taught Cavalieri geometry and he showed such promise that Cavalieri sometimes took over Castelli's lectures at the university. Cavalieri applied for the chair of mathematics in Bologna in 1619 but was not successful since he was considered too young for a position of this seniority. He also failed to get the chair of mathematics at Pisa when Castelli left for Rome. In 1621 Cavalieri became a deacon and assistant to Cardinal Federico Borromeo at the monastery in Milan. He taught theology there until 1623 when he became prior of St Peter's at Lodi. After three years at Lodi he went to the Jesuati monastery in Parma, where he was to spend another three years.

18. Sala_txt
Atti del convegno cavalieri bonaventura Alter Archimedes, Comune di Verbania,Verbania, 1999. 18 Slavin, RE Cooperative Learning Theory, Research and
http://tojde.anadolu.edu.tr/tojde5/articles/sala_txt.htm
TOJDE January 2002 ISSN 1302-6488 Volume:3 Number:1 Cooperative Hypertext:
An Educational Example Nicoletta SALA
University of Italian SWITZERLAND
INTRODUCTION
In the WLE project the students were encouraged to work cooperatively in pairs while completing a WWW – based learning activity.
In this paper we present the fifth phase of the WLE project dedicated to the development of a cooperative hypertext. This phase involved some interesting educational and social aspects.
HYPERTEXTS IN EDUCATIONAL PROCESS: AN OVERVIEW
Hypertext is described as non-sequential written text that allows branches and multiple paths to be selected by the reader. First idea of hypertext was presented by Vannervar Bush as early as 1945. Bush proposed his MEMEX machine in an article entitled “As We May Think”. The idea was to create a machine that would link or associate material for reference purposes [2].
“…wholly new forms of encyclopedias will appear, ready made with mesh of associative trails running through them, ready to be dropped into the memex and there amplified” [3]. Actually, the hypertext allows a reader to enter and exit at multiple points. For this reason the very nature of hypertext gives the reader the freedom to choose his or her own path. The evolution of the software and hardware

19. Bonaventura Francesco Cavalieri - Wikipedia
Bonaventura Francesco Cavalieri. Cavalieri se je že zelo zgodaj v Milanu leta1615 pridružil redu jezuitov. Leta 1616 je odšel v Piso.
http://sl.wikipedia.org/wiki/Bonaventura_Francesco_Cavalieri
Wikimedija potrebuje vašo pomoč pri zbiranju 200.000 dolarjev . Za podrobnosti glejte stran o zbiranju prispevkov Zbrali smo že preko 140.000$. Hvala za vašo velikodušnost!
Bonaventura Francesco Cavalieri
Iz Wikipedije, proste enciklopedije.
Bonaventura Francesco Cavalieri italijanski matematik fizik in astronom Milano , sedaj Italija 3. december (ali 30. november Bologna
Bonaventura Francesco Cavalieri Cavalieri se je že zelo zgodaj v Milanu leta pridružil redu jezuitov . Leta je odšel v Piso . Nanj je v tem času zelo vplivalo Evklidovo delo. Od leta je bil Cavalieri profesor v Bologni. Bil je Galilejev učenec. Ukvarjal se je s problemom kontinuuma . Pri njem se je pojavil pojem neskončno majhne količine Delal je na področju ravninske in sferne trigonometrije . Prvi je uvedel pojem žariščnih razdalj optičnih leč . Znan je zlasti po načelu iz elementarne geometrije , imenovanem po njem: prostornine geometrijskih teles z enako višino in s, osnovni ploskvi ploščinsko enakimi vzporednimi osnovnimi ravninskimi preseki, so enake. Načela ne moremo neoposredno dokazati s prijemi elementarne geometrije in si pomagamo z orodji iz analize . Ukvarjal se je s kvadraturami in tudi s kvadraturo parabole Leta je svoje delo na področju nedeljivih podal v delu Geometria indivisibilibus continuorum nova quadam ratione promota . Tu je naprej razvil že Arhimedu znano metodo izčrpavanja in jo vključil v Keplerjevo teorijo neskončno majhnih geometrijskih količin.

20. Bonaventura Cavalieri - Wikipedia
Bonaventura Cavalieri. Bonaventura CavalieriJesuita y matemático italiano, nacido en Milan (1598) y fallecido en Bolonia
http://es.wikipedia.org/wiki/Bonaventura_Cavalieri
Wikimedia necesita de tu ayuda en su campa±a para recolectar USD$ 200.000 . V©ase nuestra p¡gina de recolecci³n de fondos para m¡s detalles.
Bonaventura Cavalieri
De Wikipedia, la enciclopedia libre.
Bonaventura Cavalieri Bonaventura Cavalieri Jesuita y matem¡tico italiano, nacido en Milan (1598) y fallecido en Bolonia (1647).Fue alumno de Galileo , y ense±³ matem¡ticas en Bolonia (1629).Su inter©s por las matem¡ticas fue estimulado por los trabajos de Eucl­des y luego de encontrar a Galileo, se consider³ como un disc­pulo de este astr³nomo En Pisa, Cavalieri fue educado en matem¡ticas por Benedetto Castelli, un profesor de matem¡ticas en la Universidad de Pisa. En 1629 Cavalieri fue nombrado profesor de matem¡ticas en Bolonia. Fue el primero en introducir en Italia el c¡lculo logar­tmico.Pero debe su celebridad a su teor­a de los " indivisibles ", que expuso en Geometr­a indivisibilibus continuorum quadam nova ratione promota (1635). Esta teor­a estudia las magnitudes geom©tricas como compuestas de un nºmero infinito de elementos, o indivisibles, que son los ºltimos t©rminos de la descomposici³n que se puede hacer. La medida de las longitudes, de las superficies y de los volºmenes se convierte en efectuar la suma de la infinidad de indivisibles: es el principio del c¡lculo de una integral definida. Tambi©n puede ser considerado como el precursor del an¡lisis infinitesimal moderno.Figur³ entre los primeros que ense±aron la teor­a copernicana de los planetas. Otros trabajos suyos dignos de renombre son el desarrollo dado a la trigonometr­a esf©rica, as­ como el descubrimiento de las f³rmulas relativas a los focos de los espejos y de las lentes

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 1     1-20 of 100    1  | 2  | 3  | 4  | 5  | Next 20

free hit counter