Geometry.Net - the online learning center
Home  - Scientists - Burali-forti Cesare
e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 97    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Burali-forti Cesare:     more books (15)
  1. Logica matematica (Italian Edition) by Cesare Burali-Forti, 1919-01-01
  2. Transformations Linéaires (French Edition) by Cesare Burali-Forti, 2010-01-09
  3. Introduction À La Géométrie Différentielle: Suivant La Méthode De H. Grassmann (French Edition) by Cesare Burali-Forti, 2010-03-21
  4. Introduction à la géométrie différentielle, suivant la méthode de H. Grassmannby Burali-Forti (French Edition) by Cesare Burali-Forti, 1897-01-01
  5. Lezioni di geometria metrico-proiettiva (Italian Edition) by Cesare Burali-Forti, 1904-01-01
  6. [Pamphlets, mathematics.] (Italian Edition) by Cesare Burali-Forti, 1893-01-01
  7. Omografie vettoriali: con applicazioni alle derivate rispetto ad un punto e alla fiscia-matematica (Italian Edition) by Cesare Burali-Forti, 1909-01-01
  8. Applications à la mécanique et à la physique (French Edition) by Cesare Burali-Forti, 1913-01-01
  9. Applications A La Mecanique Et A La Physique V2 (1913) (French Edition) by Cesare Burali-Forti, Roberto Marcolongo, 2010-03-19
  10. Corso di geometria analitico-proiettiva per gli allievi della R. Accademia Militare (Italian Edition) by Cesare Burali-Forti, 1912-01-01
  11. Corso di geometria analitico-proiettiva (Italian Edition) by Cesare Burali-Forti, 1912-01-01
  12. Applications A La Mecanique Et A La Physique V2 (1913) (French Edition) by Cesare Burali-Forti, Roberto Marcolongo, 2010-09-10
  13. Elementi di calcolo vettoriale con numerose applicazioni alla geometria, alla meccanica e alla fisica-matematica (Italian Edition) by Cesare Burali-Forti, 1920-01-01
  14. Applications A La Mecanique Et A La Physique V2 (1913) (French Edition) by Cesare Burali-Forti, Roberto Marcolongo, 2010-09-10

41. Biografie - Cesare Burali-Forti

http://galileo.imss.firenze.it/milleanni/cronologia/biografie/burali.html
Cesare Burali-Forti Arezzo 1861- Torino 1931 Collaboratore di Peano nella stesura del Formulario matematico Logica matematica Indietro Indice Biografie Inizio

42. Biografie
burali-forti, cesare Buscaino, Vito Maria Buzzati Traverso, Adriano
http://galileo.imss.firenze.it/milleanni/cronologia/biografie/indice.html
Indice delle Biografie A B C D ...
Colucci, Cesare

Commandino, Federico
Conversi, Marcello

Corbino, Orso Mario

Cornelio, Tommaso

Corti, Alfonso
...
[top]
Quattromani, Sertorio
Quercetano (Duschesne, Joseph) [top] Ramazzini, Bernardino
Rasetti, Franco

Rasori, Giovanni
... Inizio

43. Absolute Infinite -- Facts, Info, And Encyclopedia Article
and is closely related to (Click link for more info and facts about cesareburaliforti s paradox ) cesare burali-forti s paradox that there can be
http://www.absoluteastronomy.com/encyclopedia/A/Ab/Absolute_Infinite.htm
Absolute Infinite
[Categories: Theology, Philosophy of mathematics, Philosophy]
The Absolute Infinite is (Click link for more info and facts about Georg Cantor) Georg Cantor 's concept of an " (Time without end) infinity " that transcended the (Click link for more info and facts about transfinite number) transfinite number s. Cantor equated the Absolute Infinite with (The supernatural being conceived as the perfect and omnipotent and omniscient originator and ruler of the universe; the object of worship in monotheistic religions) God . He held that the (Something that is conceived to be absolute; something that does not depends on anything else and is beyond human control) Absolute (Click link for more info and facts about Infinite) Infinite had various (Click link for more info and facts about mathematical) mathematical properties, including that every property of the Absolute Infinite is also held by some smaller object.
Cantor's view
Cantor is quoted as saying:
The actual infinite arises in three contexts: first when it is realized in the most complete form, in a fully independent otherworldly being, in Deo , where I call it the Absolute Infinite or simply Absolute; second when it occurs in the contingent, created world; third when the mind grasps it

44. Foundations Of Mathematics
buraliforti, cesare. A Question on Transfinite Numbers. In From Frege to GödelA Sourcebook in Mathematical Logic, 1897-1931, edited by J. Heijenoort.
http://www.canyoninstitute.org/resources/URBibliography/061_foundations_math_a.h
Foundations of Mathematics
Bernhart, Frank. "Are Mathematical Objects Ontologically Real?: Ideas and Suggestions." In A Second Conference on the Foundations of Mathematics , edited by Brabenec, Robert L. Wheaton, IL: Wheaton College (1979) 80-88. Brouwer, Luitzen Egbertus Jan. "Intuitionistic Reflections on Formalism." In From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879-1931 , edited by J. Heijenoort. Lincoln, NE: toExcel (1967) 490-492. Brouwer, Luitzen Egbertus Jan. "On the Significance of the Principle of Excluded Middle in Mahtematics, Especially in Function Theory." In From Frege to Gödel: A Sourcebook in Mathematical Logic 1879-1931 , edited by J. Heijenoort. Lincoln, NE: toExcel (1967) 334-345. Burali-Forti, Cesare. "A Question on Transfinite Numbers." In From Frege to Gödel: A Sourcebook in Mathematical Logic, 1897-1931 , edited by J. Heijenoort. Lincoln, NE: toExcel (1967) 104-112. De Koning, Jan. "Can Mathematical Methods Yield Theological Truth?" In An Eighth Conference on Mathematics from a Christian Perspective , edited by Robert L. Brabenec. Wheaton, IL: Wheaton College (1991) 176-190.

45. Russell's Paradox
cesare buraliforti, an assistant to Giuseppe Peano, had discovered a similarantinomy in 1897 when he noticed that since the set of ordinals is
http://plato.stanford.edu/entries/russell-paradox/
version history
HOW TO CITE

THIS ENTRY
Stanford Encyclopedia of Philosophy
A ... Z
This document uses XHTML/Unicode to format the display. If you think special symbols are not displaying correctly, see our guide Displaying Special Characters last substantive content change
MAY
The Encyclopedia Now Needs Your Support

Please Read How You Can Help Keep the Encyclopedia Free
Russell's Paradox
Russell's paradox is the most famous of the logical or set-theoretical paradoxes. The paradox arises within naive set theory by considering the set of all sets that are not members of themselves. Such a set appears to be a member of itself if and only if it is not a member of itself, hence the paradox. Some sets, such as the set of all teacups, are not members of themselves. Other sets, such as the set of all non-teacups, are members of themselves. Call the set of all sets that are not members of themselves " R ." If R is a member of itself, then by definition it must not be a member of itself. Similarly, if R is not a member of itself, then by definition it must be a member of itself. Discovered by Bertrand Russell in 1901, the paradox has prompted much work in logic, set theory and the philosophy and foundations of mathematics.

46. References For Burali-Forti
References for cesare buraliforti. R Marcolongo, cesare burali-forti, Bollettinodell Unione matematica italiana 10 (1931), 182-185.
http://202.38.126.65/mirror/www-history.mcs.st-and.ac.uk/history/References/Bura

47. Browse The Cornell Library Historical Math Monographs
Translate this page by burali-forti, cesare. Applications of the calculus to mechanics by Hedrick,Earle Raymond. Applicazioni geometriche del calcolo infinitesimale
http://historical.library.cornell.edu/math/title_A.html
A B C D E ... WXYZ Titles "A" Een aanhangsel tot de tafels van onbepaalde integralen
by Haan, D. Bierens Abel's theorem and the allied theory, including the theory of the theta functions
by Baker, H. F. Abhandlungen Aus Der Functionenlehre
by Weierstrass, Karl Abrége de la théorie des fonctions elliptiques à l'usage des candidats à la licence ès sciences mathématiques
by Henry, Charles Abriss des geometrischen Kalküls; nach den Werken des Professors H. G. Grassmann bearbeitet
by Kraft, Ferdinand Abriss einer theorie der algebraischen funktionen einer veränderlichen in neuer fassung
by Stahl, Hermann Abriss einer Theorie der Abelschen Functionen von drei Variabeln
by Schottky, Friedrich Hermann Address of Professor Benjamin Peirce, President of the American Association for the Year 1853, on Retiring from the Duties of President
by Peirce, Benjamin Advanced calculus; a text upon select parts of differential calculus, differential equations, integral calculus, theory of functions; with numerous exercises
by Wilson, Edwin Bidwell Algebra, mit einschluss der elementaren zahlentheorie

48. MATH-HISTORY-LIST Archives -- October 1998 (#191)
Right, I think. and then quoted The historically first paradox was discoveredin 1897 by cesare buraliforti (1861-1931) in Cantor s theory of ordinal
http://www.maa.org/scripts/WA.EXE?A2=ind9810&L=math-history-list&T=0&O=A&P=20848

49. Beginnings Of Set Theory
In 1897 the first published paradox appeared, published by cesare buraliforti.Some of the impact of this paradox was lost since burali-forti got the
http://physics.rug.ac.be/Fysica/Geschiedenis/HistTopics/Beginnings_of_set_theory
The beginnings of set theory
Previous topic Next topic History Topics Index
The history of set theory is rather different from the history of most other areas of mathematics. For most areas a long process can usually be traced in which ideas evolve until an ultimate flash of inspiration, often by a number of mathematicians almost simultaneously, produces a discovery of major importance. Set theory however is rather different. It is the creation of one person, Georg Cantor . Before we take up the main story of Cantor 's development of the theory, we first examine some early contributions. The idea of infinity had been the subject of deep thought from the time of the Greeks. Zeno of Elea , in around 450 BC, with his problems on the infinite, made an early major contribution. By the Middle Ages discussion of the infinite had led to comparison of infinite sets. For example Albert of Saxony, in Questiones subtilissime in libros de celo et mundi, proves that a beam of infinite length has the same volume as 3-space. He proves this by sawing the beam into imaginary pieces which he then assembles into successive concentric shells which fill space. Bolzano was a philosopher and mathematician of great depth of thought. In 1847 he considered sets with the following definition

50. References For Burali-Forti
References for cesare buraliforti. Version for printing R Marcolongo, cesareburali-forti, Bollettino dell Unione matematica italiana 10 (1931), 182-185.
http://turnbull.mcs.st-and.ac.uk/history/References/Burali-Forti.html
References for Cesare Burali-Forti
Version for printing
  • Biography in Dictionary of Scientific Biography (New York 1970-1990). Books:
  • H C Kennedy, Peano : Life and Works of Giuseppe Peano (Dordrecht, 1980). Articles:
  • V (Louvain, 1953), 70-72.
  • P Freguglia, Cesare Burali-Forti and studies on geometric calculus (Italian), Italian mathematics between the two world wars (Bologna, 1987), 173-180.
  • R Marcolongo, Cesare Burali-Forti, Bollettino dell'Unione matematica italiana
  • G H Moore and A Garciadiego, Burali-Forti's paradox: a reappraisal of its origins, Historia Mathematica Main index Birthplace Maps Biographies Index
    History Topics
    ... Anniversaries for the year
    JOC/EFR December 1997 School of Mathematics and Statistics
    University of St Andrews, Scotland
    The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/References/Burali-Forti.html
  • 51. B Index
    Boislaurent (171) Buffon, Georges Comte de (1715*) Bugaev, Nicolay (622*) Bukreev,Boris (165*) Bunyakovsky, Viktor (729*) buraliforti, cesare (530) Burchnall
    http://turnbull.mcs.st-and.ac.uk/history/Indexes/B.html
    Names beginning with B
    The number of words in the biography is given in brackets. A * indicates that there is a portrait. Babbage , Charles (2793*)
    Bachelier
    , Louis (1384*)
    Bachet
    , Claude (165)
    Bachmann
    , Paul (386*)
    Backus
    , John (542*)
    Bacon
    , Roger (657*)
    Baer
    , Reinhold (596*)
    Baghdadi
    , Abu al (947)
    Baire

    Baker, Alan

    Baker, Henry
    Ball, Robert ... Balmer , Johann (601*) Banach , Stefan (2533*) Banneker , Benjamin (892*) Banna , al-Marrakushi al (861) Banu Musa brothers Banu Musa, al-Hasan Banu Musa, Ahmad Banu Musa, Jafar ... bar Hiyya , Abraham (641) Barbier , Joseph Emile (637) Bari , Nina (403*) Barlow , Peter (623*) Barnes , Ernest (609*) Barocius , Franciscus (201) Barrow , Isaac (2332*) Barozzi , Francesco (201) Bartholin , Erasmus (189*) Batchelor , George (1035*) Bateman , Harry (1651*) Battaglini , Guiseppe (102*) Baudhayana Battani , Abu al- (1333*) Baxter , Agnes (624*) Bayes , Thomas (1539*) Beaugrand , Jean (222) Beaune , Florimond de (316) Beckenbach , Edwin (1243) Beg , Ulugh (1219*) Behnke , Heinrich (1886*) Bell, Eric Temple Bell, John Bellavitis , Giusto (762*) Beltrami , Eugenio (1057*) ben Ezra , Abraham (552) ben Gerson , Levi (268) ben Tibbon , Jacob (198) Bendixson , Ivar Otto (1208*) Benedetti , Giovanni (211) Benjamin , Thomas (1484*) Bergman , Stefan (311*) Berkeley , George (2008*) Bernays , Paul Isaac (772*) Bernoulli, Daniel

    52. Philosophy And Logicians - InfoAnarchy Wiki
    Translate this page Guillaume Bülffinger, Georg Bernhard Bulgakow, Sergej Nikolajewitsch Bunizki,Jewgeni Leonidowitsch burali-forti, cesare Buridian, Johannes Burke,
    http://www.infoanarchy.org/wiki/index.php/Philosophy_and_Logicians
    Philosophy and Logicians
    From infoAnarchy Wiki
    [a] [b] [c] [d] [e] [f] [g] [h] [i] [j] [k] [l] [m] [n] [o] [p] [q] [r] [s] [t] [u] [v] [w] [x] [y] [z] A [Abaelard, Pierre] http://www.philo-forum.de/philosophen/abaelard/pierre/sid_128/
    [Abbt, Thomas] http://mdz2.bib-bvb.de/~ndb/ndbvoll.html?inpAuswahl%5B%5D=22
    Achillini, Alessandro http://36.1911encyclopedia.org/A/AC/ACHILLINI_ALESSANDRO.htm
    Ackermann, Wilhelm http://www.philosophenlexikon.de/ackerm.htm
    Adam of Balsham http://www.philosophenlexikon.de/adam.htm
    Adelard von Bath
    [Adler, Max] http://www.leksikon.org/art.php?n=16
    [Adorno,] http://plato.stanford.edu/entries/adorno/
    Theodor Wiesengrund
    [Th©odor W.-Adorno] http://www.chez.com/patder/adorno.htm N© en 1903   Francfort-sur-le-Main, Th©odor W.-Adorno v©cu dans un entourage familial qui le pr©disposait   une carri¨re musicale: sa m¨re ©tait cantatrice et sa tante, elle mªme musicienne, contribua d'une mani¨re d©cisive   l'©panouissement musical d'Adorno. Ce dernier soutint en 1923 sa th¨se, non publi©e, sur Husserl   l'Universit© de Francfort (il s'agit de "la transcendance de l'objectal et de la no©matique dans la ph©nom©nologie de Husserl", sous la direct. de Hans Cornelius), avant de se rendre   Vienne pour y ©tudier la composition musicale et le piano.]
    [Agnesi, Maria Gaetana]

    53. Practical Foundations Of Mathematics
    equivalent for sets (Exercise 6.42); the last is usually calledKuratowski finiteness, but cesare burali-forti was actually the first to formulateit.
    http://www.cs.man.ac.uk/~pt/Practical_Foundations/html/s66.html
    Practical Foundations of Mathematics
    Paul Taylor
    Finiteness
    It probably comes as something of a surprise that we have got this far through a book on foundations of mathematics - especially a book which stresses constructivity - without discussing finiteness. Emphasis on finite enumeration was a reaction to the excesses of classical set theory, and clearly any set which is given by picking its elements must be finite in order to be represented in a machine. The reason why we have played down finiteness is that mathematical and computational objects are normally handled according to their structure , with no need for explicit enumeration. Besides, enumerative processes are very slow: one does not have to go to a very high order of functions over a two-element base type to exhaust the memory of a computer, or indeed of the Universe. We can nevertheless handle higher order functions very easily with the l -calculus, and prove certain properties of all numbers by induction without examining each one.

    54. Practical Foundations Of Mathematics
    However, cesare buraliforti (1897) showed that the whole system is a properclass it cannot be an individual. Dimitry Mirimanoff (1917) showed that this
    http://www.cs.man.ac.uk/~pt/Practical_Foundations/html/s67.html
    Practical Foundations of Mathematics
    Paul Taylor
    The Ordinals
    The ordinals admit a peculiar kind of arithmetic, into which it is often possible to make a crude translation of syntax. This provides a simple but powerful way of finding loop measures and so justifying termination or induction principles. n n N of accumulation points and so on. Then in 1870 he realised that the set n , ... could be defined. We might picture , now called w , as a diminishing sequence of matchsticks: w w w w w w w w w w w w Although Cantor had developed ordinal arithmetic in 1880, only in 1899 did he formulate a correct definition [ ], that an ordinal is an ordered set in which every non-empty subset has a least member: ``there's a first time for everything.'' In other words, a trichotomous (Definition ) well founded relation (Proposition The easiest way to tell these countable infinities apart is to work backwards, ie find out what descending sub-sequences there are. Every such sub-sequence must eventually stop: that's well-foundedness (Proposition ). In the longer ones, there is more opportunity to dawdle down, but from time to time we must leap from the heights of a limit ordinal, landing somewhere that is infinitely far below.

    55. Lebensdaten Von Mathematikern
    Translate this page burali-forti, cesare (1861 - 1931) Fourier, Jean Baptiste Joseph de (21.3.1768 -16.5.1830) Fox, Charles (1897 - 1977) Fraenkel, Adolf Abraham (17.2.1891
    http://www.mathe.tu-freiberg.de/~hebisch/cafe/lebensdaten.html
    Diese Seite ist dem Andenken meines Vaters Otto Hebisch (1917 - 1998) gewidmet. By our fathers and their fathers
    in some old and distant town
    from places no one here remembers
    come the things we've handed down.
    Marc Cohn Dies ist eine Sammlung, die aus verschiedenen Quellen stammt, u. a. aus Jean Dieudonne, Geschichte der Mathematik, 1700 - 1900, VEB Deutscher Verlag der Wissenschaften, Berlin 1985. Helmut Gericke, Mathematik in Antike und Orient - Mathematik im Abendland, Fourier Verlag, Wiesbaden 1992. Otto Toeplitz, Die Entwicklung der Infinitesimalrechnung, Springer, Berlin 1949. MacTutor History of Mathematics archive A B C ... Z Abbe, Ernst (1840 - 1909)
    Abel, Niels Henrik (5.8.1802 - 6.4.1829)
    Abraham bar Hiyya (1070 - 1130)
    Abraham, Max (1875 - 1922)
    Abu Kamil, Shuja (um 850 - um 930)
    Abu'l-Wafa al'Buzjani (940 - 998)
    Ackermann, Wilhelm (1896 - 1962) Adams, John Couch (5.6.1819 - 21.1.1892) Adams, John Frank (5.11.1930 - 7.1.1989) Adelard von Bath (1075 - 1160) Adler, August (1863 - 1923) Adrain, Robert (1775 - 1843)

    56. Biografisk Register
    Translate this page burali-forti, cesare (1861-1931) Buridan, Jean (ca. 1295-1358) Campanus fraNavarra (1220-96) Cantor, Georg (1845-1918) Cantor, Moritz (1829-1920)
    http://www.geocities.com/CapeCanaveral/Hangar/3736/biografi.htm
    Biografisk register
    Matematikerne er ordnet alfabetisk på bakgrunn av etternavn. Linker angir at personen har en egen artikkel her. Fødsels- og dødsår oppgis der dette har vært tilgjengelig.
    Abel, Niels Henrik
    Abu Kamil (ca. 850-930)
    Ackermann, Wilhelm (1896-1962)
    Adelard fra Bath (1075-1160)
    Agnesi, Maria G. (1718-99)
    al-Karaji (rundt 1000)
    al-Khwarizmi, Abu Abd-Allah Ibn Musa (ca. 790-850)
    Anaximander (610-547 f.Kr.)
    Apollonis fra Perga (ca. 262-190 f.Kr.)
    Appel, Kenneth
    Archytas fra Taras (ca. 428-350 f.Kr.) Argand, Jean Robert (1768-1822) Aristoteles (384-322 f.Kr.) Arkimedes (287-212 f.Kr.) Arnauld, Antoine (1612-94) Aryabhata (476-550) Aschbacher, Michael Babbage, Charles (1792-1871) Bachmann, Paul Gustav (1837-1920) Bacon, Francis (1561-1626) Baker, Alan (1939-) Ball, Walter W. R. (1892-1945) Banach, Stéfan (1892-1945) Banneker, Benjamin Berkeley, George (1658-1753) Bernoulli, Jacques (1654-1705) Bernoulli, Jean (1667-1748) Bernstein, Felix (1878-1956) Bertrand, Joseph Louis Francois (1822-1900) Bharati Krsna Tirthaji, Sri (1884-1960)

    57. Hypermedia Joyce Studies, 3.1 (2002), Louis Armand
    cesare buraliforti, an assistant to the mathematician Guiseppi Peano, discovereda similar antinomy in 1897 when he observed that since the set of ordinals
    http://www.geocities.com/hypermedia_joyce/armand.html
    [FW 293]
    Hart's schematic ( model of the Wake in Structure and Motif in Finnegans Wake bears particular resemblances to this "vicociclometer." Describing a double chiasmatic movement between the four books of the Wake he argues that:
    Around a central section, Book II, Joyce builds two opposing cycles consisting of Books I and III. In these two Books there is established a pattern of correspondences of the major events of each, those in Book III occurring in reverse order and having inverse characteristics. Whereas Book I begins with a rather obvious birth (28-9) and ends with a symbolic death (215-6), Book III begins with a death (403) and ends with a birth (590); "roads" and the meeting with the King (I.2) reappear in III.4, the trial of I.3-4 in III.3, the Letter of I.5 in III.1, and the fables of I.6 earlier in III.1. In his correspondence Joyce implicitly referred to this pattern.29
    Such a Viconian "duplex" (FW 292.24) is also suggested in the above diagram (located approximately mid-way through book II) as describing a transversal along the co-ordinates A(a), L(l), P(p), between a Trinitarian eschatology and an "Hystorical" (FW 567.31) cyclic re-birth, in the triangulated form of the vesica piscis: "between shift and shift ere the death he has lived through and the life he is to die into" (FW 293.003-05), becoming:
    Uteralterance or
    the Interplay of
    Bones in the
    Womb.

    58. Metamath Proof Explorer - Onprc
    In 1897, cesare buraliforti noticed that since the set of all ordinals isordinal (ordon 2471), it must be both an element of the set of all ordinals yet
    http://us.metamath.org/mpegif/onprc.html
    Home Metamath Proof Explorer
    Related theorems

    Unicode version
    Theorem onprc Description: No set contains all ordinal numbers. Proposition 7.13 of [ TakeutiZaring ] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark of [ Enderton ] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinals is ordinal ( ordon ), it must be both an element of the set of all ordinals yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. Assertion Ref Expression onprc Proof of Theorem onprc Step Hyp Ref Expression ordon ordeirr ax-mp elong ... mto Colors of variables: wff set class Syntax hints: wn wcel cvv word This theorem is referenced by: ordeleqon sucon ordunisuc orduninsuc ... omelon This theorem was proved from axioms: ax-1 ax-2 ax-3 ax-mp ... ax-pow This theorem depends on definitions: df-bi df-or df-an df-3or ... metamath.org

    59. Liste Alphabétique Des Mathématiciens
    Translate this page burali-forti (cesare), Italien (1861-1931). Campanus de Novare, Italien (début13 ième siècle-1296). Cantor (Georg), Allemand (1845-1918)
    http://www.cegep-st-laurent.qc.ca/depar/maths/noms.htm
    Abel (Niels Henrik) Agnesi (Maria Guetana) Italienne (1718-1799) Alembert (Jean Le Rond d') Alexander (James Waddell) Alexandroff (Pavel Sergeevich) Russe (1896-1982) Apian (Peter Benneuwitz, dit) Allemand (1495-1552) Apollonios de Perga Grec(v.~262-v.~180) Appel (Paul) Grec (~287-~212) Aristote Grec (~384-~322) Arzela (Cesare) Italien (1847-1912) Ascoli (Guilio) Italien (1843-1896) Babbage (Charles) Anglais (1792-1871) Banach (Stefan) Polonais (1892-1945) Argand (Jean Robert) Suisse (1768-1822) Barrow (Isaac) Anglais (1630-1677) Bayes (Thomas) Anglais (1702-1761) Bellavitis (Giusto) Italien (1803-1880) Beltrami (Eugenio) Italien (1835-1900) Bernays (Paul) Suisse (1888-1977) Bernoulli (Daniel) Suisse (1700-1782) Bernoulli (Jacques) Suisse (1654-1705) Bernoulli (Jean) Suisse (1667-1748) Allemand (1878-1956) Bernstein (Sergei Natanovich) Russe (1880-1968) Bertrand (Josepn) Bessel (Friedrich) Allemand (1784-1846) Birkoff (George David) Bliss (Gilbert Ames) Bochner (Salomon) Allemand (1899-1982) Bolyai (Janos) Hongrois (1802-1860) Bolzano (Bernhard) Bombelli (Raffaele) Italien (1522-1572) Bonnet (Ossian) Boole (George) Anglais (1815-1864) Bourbaki (Nicolas) Braikenridge (William) Anglais (v.1700-1762)

    60. New Dictionary Of Scientific Biography
    Translate this page burali-forti, cesare Bürgi, Joost Burnside, William Burrau, Carl Jensen Buteo,Johannes Cabeo, Niccolo Calandrelli, Ignazio Callippus Campanus of Novara
    http://www.indiana.edu/~newdsb/math.html
    Make Suggestions
    Mathematics
    Abel, Niels Henrik
    Abraham Bar ?iyya Ha-Nasi
    Abu Kamil Shuja? Ibn Aslam Ibn Mu?ammad Ibn Shuja?
    Abu'l-Wafa? al-Buzjani, Mu?ammad Ibn Mu?ammad Ibn Ya?ya Ibn Isma?il Ibn al- ?Abbas
    Adams, John Couch
    Adelard of Bath
    Adrain, Robert
    Aepinus, Franz Ulrich Theodosius
    Agnesi, Maria Gaetana
    Aguilon, François d'
    A?mad Ibn Yusuf Aida Yasuaki Ajima Naonobu Akhiezer, Naum Il'ich Albert, Abraham Adrian Albert of Saxony Alberti, Leone Battista Aleksandrov, Pavel Sergeevich Alembert, Jean Le Rond d' Alzate y Ramírez, José Antonio Ampère, André-Marie Amsler, Jakob Anatolius of Alexandria Anderson, Oskar Johann Viktor Andoyer, Henri Angeli, Stefano Degli Anthemius of Tralles Antiphon Apollonius of Perga Appell, Paul Arbogast, Louis François Antoine Arbuthnot, John Archimedes Archytas of Tarentum Argand, Jean Robert Aristaeus Aristarchus of Samos Arnauld, Antoine Aronhold, Siegfried Heinrich Artin, Emil Atwood, George Autolycus of Pitane Auzout, Adrien

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 97    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter