Geometry.Net - the online learning center
Home  - Scientists - Brahmagupta
e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Brahmagupta:     more books (29)
  1. Algebra, with Arithmetic and mensuration, from the Sanscrit of Brahmegupta and Bháscara. Translated by Henry Thomas Colebrooke by 7th cent Brahmagupta, b 1114 Bhaskaracarya, et all 2010-08-27
  2. Brahmagupta, Man who found zero, addition, subtraction, multiplication and division (1) by Sanjaya Ranatunga, 2008-05-10
  3. Ancient Indian Mathematicians: Brahmagupta
  4. Brahmagupta: Great Ape Language
  5. Hindu Algebra: from the Sanskrit Works of Brahmagupta and Bhaskar by H.T. Colebrooke, 2004-12-30
  6. Décès En 668: Constant Ii, Saint Wandrille, Brahmagupta (French Edition)
  7. 7th-Century Mathematicians: Brahmagupta, Anania Shirakatsi, Bhaskara I
  8. People From Jalore District: Brahmagupta, Bhagraj Choudhary, Kanhad Dev, Magha, Gopal Singh
  9. Quadrilatère: Parallélogramme, Rectangle, Losange, Trapèze, Carré, Cerf-Volant, Formule de Brahmagupta, Antiparallélogramme, Pseudo-Carré (French Edition)
  10. Brahmagupta-Fibonacci Identity
  11. Brahmagupta's Problem
  12. People From Rajasthan: Brahmagupta, Paramhans Swami Maheshwarananda, Thakur Deshraj, List of People From Rajasthan, Ram Rahim Singh, Ranabai
  13. Indische Mathematik: S. Ramanujan, Null, Indische Ziffern, Aryabhata-Code, Brahmagupta (German Edition)
  14. Ancient Indian Scientists: Ancient Indian Mathematicians, Ancient Indian Physicians, Nagarjuna, Brahmagupta, Aryabhata, Sushruta Samhita

61. Brahmagupta's Theorem
brahmagupta was a Hindu mathematician of the seventh century AD who discovereda neat formula for the area of a cyclic quadrilateral. Cyclic quad
http://www.mth.uct.ac.za/digest/brahmagupta.html
Brahmagupta's Problem
Brahmagupta was a Hindu mathematician of the seventh century AD who discovered a neat formula for the area of a cyclic quadrilateral. If the side lengths are a b c and d , and s a b c d s is the semi-perimeter of the quadrilateral), then the area is given by the formula: The proof of Brahmaghupta's formula requires a good deal of trigonometry embedded in rather a lot of crunchy algebra, so we'll leave it for another day. But it is possible to prove that if a cyclic quadrilateral has perpendicular diagonals crossing at P , the line through P perpendicular to any side bisects the opposite side. Up Next
Home

Place an order

62. Brahmagupta
Copyright © 19902001 by KCP Technologies, Inc. Licensed only for non-commercialuse. Sorry, this page requires a Java-compatible web browser. brahmagupta.
http://mtl.math.uiuc.edu/modules/module15/Java stuff/Brahmagupta_Formula.html
This page uses JavaSketchpad , a World-Wide-Web component of The Geometer's Sketchpad
Sorry, this page requires a Java-compatible web browser. Brahmagupta

63. Brahmagupta's Formula
brahmagupta s Formula Click here for the Math Help Home page. brahmagupta s formulaprovides the area A of a cyclic quadrilateral (ie,
http://mcraefamily.com/MathHelp/GeometryCyclicQuadrilateralBrahmagupta.htm
Brahmagupta's formula provides the area A of a cyclic quadrilateral (i.e., a simple quadrilateral that is inscribed in a circle) with sides of length a, b, c, and d as A = sqrt((s-a)(s-b)(s-c)(s-d)), where s is the semiperimeter (a+b+c+d)/2 If the quadrilateral ABCD is a rectangle, then s=a+b, so A=sqrt((b)(a)(b)(a))=ab, so the formula is true. In any cyclic quadrilateral, you can see that opposite angles are supplemental by drawing a diagonal, AC. Angle D subtends the arc ABC, so the measure of angle D is half the measure of arc ABC. Angle B subtends the arc ADC, so the measure of angle B is half the measure of arc ADC. The sum of the measures of arcs ABC and ADC is 360º, so the sum of the measures of angles B and D is 180º. Now, since the quadrilateral is not a rectangle, you can find two sides that aren't parallel. WNLOG, extend AB and DC until they meet at P: Angles BAD and BCD are supplementary, as are angles BAD and PAD, so angle BCD is equal to angle PAD. So triangles PBC and PDA are similar. The ratio of their sides is b/d, so the ratio of their areas is b^2/d^2. Let A be the area of the quadrilateral, and let T be the area of triangle PBC.

64. Brahmagupta: Biography And Much More From Answers.com
www.answers.com/topic/brahmaguptas-formula Brahmagupabrahmagupta was born in 598 AD and lived in the northwest of India until he brahmagupta has developed a method of solving indeterminate equations of the
http://www.answers.com/topic/brahmagupta
showHide_TellMeAbout2('false'); Business Entertainment Games Health ... More... On this page: Scientist Encyclopedia Wikipedia Mentioned In Or search: - The Web - Images - News - Blogs - Shopping Brahmagupta Scientist Brahmagupta [b. central India, c. 598, d. c. 665] This Indian mathematician applied his mathematical skills to solving astronomical and geometrical problems with mixed success he made as many errors as correct applications. However, his arithmetic, which included negative numbers and zero, was much better (although still containing a few errors) and his algebra, especially his work with Diophantine equations, generally excellent. Encyclopedia Brahmagupta br¤ məgʊp tə ) , c.598–c.660, Indian mathematician and astronomer. He wrote in verse the Brahma-sphuta-siddhanta [improved system of Brahma], a standard work on astronomy containing two chapters on mathematics that were translated into English by H. T. Colebrooke in Algebra...from the Sanskrit of Brahmagupta (1817). A shorter treatise, The Khandakhadyaka (tr. 1934), expounded the astronomical system of

65. Brahmagupta -- Page VINET
Translate this page Dans le Brahma Sphuta Siddhanta, brahmagupta traite également des nombres irrationnels On doit aussi à brahmagupta un second ouvrage de mathématiques et
http://www.col-camus-soufflenheim.ac-strasbourg.fr/Page.php?IDP=496&IDD=0

66. Encyclopedia: Brahmagupta
The major divergence is that brahmagupta attempted to define division by zero,which is left MacTutor History of Mathematics article on brahmagupta
http://www.nationmaster.com/encyclopedia/Brahmagupta

Supporter Benefits
Signup Login Sources ... Pies
Related Articles People who viewed "Brahmagupta" also viewed:
  • Nilakantha Somayaji
  • Number 0
  • Bhaskara
  • 0 (number) ...
  • Algorism What's new?
  • Our next offering Latest newsletter Student area Lesson plans
  • Recent Updates
  • Colonsay Collegehumor.com Colecovision Coffin House ...
  • More Recent Articles Top Graphs
  • Richest Most Murderous Most Taxed Most Populous ...
  • More Stats
    Encyclopedia: Brahmagupta
    Updated 206 days 2 hours 37 minutes ago. Other descriptions of Brahmagupta ) was an Indian mathematician and astronomer . He was the head of the astronomical observatory at Ujjain , and during his tenure there wrote two texts on mathematics and astronomy: the Brahmasphutasiddhanta in , and the Khandakhadyaka in The Brahmasphutasiddhanta is the earliest known text other than the Mayan number system to treat zero as a number in its own right. It goes well beyond that, however, stating rules for arithmetic on negative numbers and zero which are quite close to the modern understanding. The major divergence is that Brahmagupta attempted to define division by zero , which is left undefined in modern mathematics. His definition is not terribly useful; for instance, he states that 0/0 = 0, which would be a handicap to discussion of

    67. Brahmagupta - Linix Encyclopedia
    The major divergence is that brahmagupta attempted to define division by zero, Retrieved from http//web.linix.ca/pedia/index.php/brahmagupta
    http://web.linix.ca/pedia/index.php/Brahmagupta
    Brahmagupta
    ) was an Indian mathematician and astronomer . He was the head of the astronomical observatory at Ujjain , and during his tenure there wrote two texts on mathematics and astronomy: the Brahmasphutasiddhanta in , and the Khandakhadyaka in The Brahmasphutasiddhanta is the earliest known text other than the Mayan number system to treat zero as a number in its own right. It goes well beyond that, however, stating rules for arithmetic on negative numbers and zero which are quite close to the modern understanding. The major divergence is that Brahmagupta attempted to define division by zero , which is left undefined in modern mathematics. His definition is not terribly useful; for instance, he states that 0/0 = 0, which would be a handicap to discussion of removable singularities in calculus edit
    See also
    edit
    External links

    68. Brahmagupta
    Translate this page brahmagupta est sans doute le premier, dans des calculs commerciaux, Dans sonlivre, Victor J. Katz cite un cas traité par brahmagupta n 10 137 et n
    http://serge.mehl.free.fr/chrono/Brahmagupta.html
    BRAHMAGUPTA (ou Brahamagupta) , indien, 598-660 indien Aryabhata Rolle : arabes Arabes Al-Khwarizmi babyloniennes et grecques . Son apparition en Inde
    En Inde, d'une province à l'autre, les notations différaient et évoluèrent sur plusieurs siècles Inconnue jusqu'au 16è siècle, la civilisation Maya, découverte par les espagnols au sud de l'actuel Mexique, usait d'un système de numération positionnel de base 20 présentant un symbole spécifique pour désigner l'absence d'une puissance de 20 dans la décomposition d'un nombre et que l'on peut interpréter comme un "zéro".
    Résolution d'équations diophantiennes Diophante et Aryabhata x = ny (lorsque n est entier) Pell Bhaskara Notons que le concept de congruence Gauss Brahamagupta dans son Bhrama Sphuta Siddhanta n et n chinoises lunaisons Dans son livre Victor J. Katz cite un cas n Gauss et les congruences :
    Une belle formule pour l'aire d'un quadrilatère inscriptible On doit à Brahamagupta inscriptible , c'est à dire dont les sommets sont sur un même cercle (quadruplet de points cocycliques), en fonction de la mesure de ses côtés : Cette formule généralise celle de l'aire du triangle souvent attribuée à Boece Khwarizmi

    69. Wiskundigen - Brahmagupta
    brahmagupta schreef een tweede boek over wiskunde en astronomie getiteld brahmagupta hoorde bij de wiskundigen in Ujjain en hij beschreef voor het eerst
    http://www.wiskundeweb.nl/Wiskundegeschiedenis/Wiskundigen/Brahmagupta.html
    Brahmagupta
    Brahmagupta (598 - 670) was een Indisch wiskundige en sterrenkundige. Over zijn leven is vrijwel niets bekend. Zijn geboorteplaats is waarschijnlijk Ujjain.
    Brahmagupta is bekend door zijn boek 'Brahmasphuta siddhanta' ('De opening van het heelal') dat hij in 628 in Bhillamala (het huidige Bhinmal) heeft geschreven in de tijd dat dit de hoofdstad van het rijk van de Gurjara-dynastie in India was. Ujjain was een belangrijk centrum van wiskundige en sterrenkundige activiteit geworden, mede door de invloed van de wiskundige Varahamihira die er had gewerkt. Brahmagupta werd er hoofd van de sterrenwacht. Brahmagupta schreef een tweede boek over wiskunde en astronomie getiteld 'Khandakhadyaka' in 665 toen hij 67 jaar oud was.
    Van Brahmagupta bestaan geen afbeeldingen Links naar anderstalige sites:
    Wiskunde in de Indische beschaving (2)
    De bloei van de wiskunde in India in de periode van 400 - 800 na Chr. was sterk gebaseerd op de studie van enkele wiskundige 'families'. Dat komt omdat het hele systeem van opvoeding en leren was gebaseerd op familietraditie. Zo'n 'wiskundige familie' beschikte over geschriften van voorgaande generaties die meestal bestonden uit commentaren en aanvullingen op nog weer oudere werken zoals de 'Aryabhatiya' van Aryabhata. Het ging daarom bij de studie van leerboeken meestal om commentaren op commentaren op commentaren van oudere leerboeken. Vaak schreven wiskundigen binnen zo'n familie zelfs commentaren op hun eigen werk. Daarbij mikten ze op opleiding van nieuwe wiskundigen binnen de familie.

    70. Math Lessons - Brahmagupta
    Math Lessons brahmagupta. The major divergence is that brahmagupta attemptedto define division by zero, which is left undefined in modern mathematics
    http://www.mathdaily.com/lessons/Brahmagupta
    Search
    Mathematics Encyclopedia and Lessons
    Lessons
    Popular Subjects
    algebra arithmetic calculus equations ... more
    References
    applied mathematics mathematical games mathematicians more ... 668 deaths
    Brahmagupta
    ) was an Indian mathematician and astronomer . He was the head of the astronomical observatory at Ujjain , and during his tenure there wrote two texts on mathematics and astronomy: the Brahmasphutasiddhanta in , and the Khandakhadyaka in The Brahmasphutasiddhanta is the earliest known text other than the Mayan number system to treat zero as a number in its own right. It goes well beyond that, however, stating rules for arithmetic on negative numbers and zero which are quite close to the modern understanding. The major divergence is that Brahmagupta attempted to define division by zero , which is left undefined in modern mathematics. His definition is not terribly useful; for instance, he states that 0/0 = 0, which would be a handicap to discussion of removable singularities in calculus
    See also
    External links
    Categories ... 668 deaths Last updated: 08-30-2005 13:25:54 algebra arithmetic calculus equations ... mathematicians

    71. Math Lessons - Brahmagupta's Identity
    Math Lessons brahmagupta s identity. In mathematics, brahmagupta s identitysays that the product of two numbers, each of which is a sum of two
    http://www.mathdaily.com/lessons/Brahmagupta's_identity
    Search
    Mathematics Encyclopedia and Lessons
    Lessons
    Popular Subjects
    algebra arithmetic calculus equations ... more
    References
    applied mathematics mathematical games mathematicians more ... Analytic number theory
    Brahmagupta's identity
    In mathematics Brahmagupta's identity says that the product of two numbers, each of which is a sum of two squares, is itself a sum of two squares. Specifically: The identity holds in any commutative ring , but most usefully in the integers The identity was discovered by Brahmagupta (598-668), an Indian mathematician and astronomer. See also Euler's four-square identity . There is a similar eight-square identity derived from the Cayley numbers , but it isn't particularly interesting for integers because every positive integer is a sum of four squares Categories Analytic number theory Last updated: 08-30-2005 13:25:54 algebra arithmetic calculus equations ... mathematicians

    72. Biographies Info Science : Brahmagupta
    brahmagupta s attaque également à la détermination du volume d un prisme et
    http://www.infoscience.fr/histoire/biograph/biograph.php3?Ref=180

    73. Brahmagupta - Wikipedia
    Krown Spellman Booksellers Khanda Khadyakam. by brahmagupta.AUTHOR brahmagupta. TITLE Khanda Khadyakam. PUBLICATION 1925. CalcuttaUniversity of Calcutta, SIZE 8vo. PAGINATION Numbered in indian type. Approx.
    http://de.wikipedia.org/wiki/Brahmagupta
    Wikimedia braucht Ihre Hilfe Helfen Sie uns, 200.000$ zu sammeln, damit Wikipedia und ihre Schwesterprojekte auch weiterhin kostenlos und werbefrei der Allgemeinheit zur Verf¼gung stehen. Weitere Informationen auf unserer Spenden-Seite
    Brahmagupta
    aus Wikipedia, der freien Enzyklop¤die
    Brahmagupta ) war ein indischer Mathematiker und Astronom . Er leitete das astronomische Observatorium in Ujjain und verfasste in dieser Funktion zwei Arbeiten zur Mathematik und zur Astronomie, das Brahmasphutasiddhanta im Jahre und das Khandakhadyaka im Jahre Das Brahmasphutasiddhanta ist, wenn man vom Zahlensystem der Mayas absieht, der fr¼heste bekannte Text, in dem die Null als vollwertige Zahl behandelt wird. Dar¼ber hinaus stellte Brahmagupta in diesem Werk Regeln f¼r die Arithmetik mit negativen Zahlen und mit der Zahl auf, die schon weitgehend unserem modernen Verst¤ndnis entsprechen. Der gr¶Ÿte Unterschied bestand darin, dass Brahmagupta auch die Division durch zulieŸ, w¤hrend in der modernen Mathematik Quotienten mit dem Divisor nicht definiert sind. Bearbeiten
    Weblinks
    Personendaten NAME Brahmagupta ALTERNATIVNAMEN KURZBESCHREIBUNG indischer Mathematiker GEBURTSDATUM GEBURTSORT STERBEDATUM STERBEORT Von " http://de.wikipedia.org/wiki/Brahmagupta

    74. Astronomy *Brahmagupta Brahmagupta (c. 588 Or C. 598 AD - C. 600
    brahmagupta (c. 588 or c. 598 AD c. 600 or 665 AD; India). brahmagupta was amathematician but he is also noted as being the last and most accomplished of
    http://www.upei.ca/~xliu/multi-culture/brah.htm
    Astronomy Brahmagupta Brahmagupta (c. 588 or c. 598 A.D. - c. 600 or 665 A.D.; India) Brahmagupta was a mathematician but he is also noted as being the last and most accomplished of all of the ancient Indian astronomers. In 628 A.D., Brahmagupta was the first person to use the mathematical concept of negative numbers to represent debts and positive numbers to represent assets as developed by the Hindus. It was Brahmagupta who developed the rules for the four operations ( addition, subtraction, multiplication and division) using negative numbers. Brahmagupta did not however present any definitions, axioms or theorems. Brahmagupta's two chief works were entitled, Khandakhadyaka and the Brahmasiddhanta. The Brahmasiddhanta, written in 628 A.D., opposed some of the Hindu findings on astronomy which had been established on a scientific basis in 476 A.D. It consisted of twenty-five chapters, twenty-three of which dealt with astronomy- most specifically lunar and solar eclipses, planetary conjunctions, lunar phases and the determination of the positions of the planet. The remaining two chapters dealt solely with mathematical concepts such as arithmetic progression, quadratic equations and the proving of geometrical theorems associated with surface and volume. In the Khandakhadyaka, Brahmagupta simply tried to simplify the already existing system. In the field of mathematics, Brahmagupta is most noted for his cyclic quadrilateral equation (Britannica, 2:461, 1994; Encyclopedia Americana, 4:410, 18:496, 24:614, 1991: and Barba, p. 64, 1995).

    75. Science, Civilization And Society
    brahmagupta. Indian astronomer, bc 598, dc 665. brahmagupta was the last greatastronomer of the early Indian tradition, which culminated in his work.
    http://www.es.flinders.edu.au/~mattom/science society/lectures/illustrations/lec

    76. Think Again! - Comments
    brahmagupta wants to know. image. What is a mathematician? brahmagupta suggesteda practial test to decide if someone is a mathematican or not.
    http://simpler-solutions.net/pmachinefree/thinkagain/comments.php?id=283_0_3_0_C

    77. Hindu Algebra From The Sanskrit Works Of Brahmagupta And Bhaskar,
    Hindu Algebra From The Sanskrit Works Of brahmagupta And Bhaskar (Colebrooke)520 COL. Hindu castes and sects (Bhattacharya, Jogendranath) 294.55 BHA
    http://www.cscsarchive.org:8081/MediaArchive/Library.nsf/0/12D625794940D89065256

    78. October 26,1996
    brahmagupta Polynomials in two parametersUniversity of Hong Kong Conference onSpecial Properties of the brahmagupta Matrix, Int. Journal ofMath.
    http://www.math.uri.edu/~sury/
    E.R. Suryanarayan
    Selected Publications
    Pythagorean Boxes (with R.A. Beauregard), Mathematics Magazine June, 2001
    S-P-2 primes (with R.A. Beauregard), The Mathematical Gazette March, 2001
    Arithmetic Triangles and Bhaskara Equation (with R.A. Beauregard), College Mathematics Journal ,March, 2000.
    Integral Triangles (with R.A. Beauregard), Mathematics Magazine (October 2000).
    Brahmagupta Polynomials in two parameters University of Hong Kong Conference on Special Functions, June 21, 1999 (with Rangarajan)
    The Brahmagupta Polynomials in two complex variables, The Fibonacci Quarterly (Feb. 1998, p. 34-42). This paper was presented at the Seventh International Conference on the Fibonacci Numbers and their Applications held in Graz, Austria, July 1996.
    The Brahmagupta Triangles, (with R.A. Beauregard) College Mathematics Journal, January 1998
    Parametric Representation of Primitive Pythagorean Triples (with R.A. Beauregard), The Mathematics Magazine, Vol. 169, No. 3, June 1996.
    Pythagorean Triples: The Hyperbolic View (Cover and Article), (with R. A. Beauregard), The College Math Journal, Vol. 27, No. 3, May 1996.

    79. » Brahmagupta Great Personalities Biography : Incredible People : Famous People
    brahmagupta’s major contribution is the rules of operation for zero. brahmagupta’s Karanakhandakhadyaka is a handbook on astronomical calculations.
    http://profiles.incredible-people.com/brahmagupta/
    Home Browse All Categories Incredible News Contact Us World Famous People Architects Artists Astrologer Astronauts ...
    About India
    Famous People of World
    Brahmagupta
    T Brahmagupta was born at Bhillamala (Bhinmal), in Gujarat, in 598 A.D. He became court astronomer to King Vyaghramukha of the Chapa dynasty. Of his two treatises, Brahmasphutasiddhanta and Karanakhandakhadyaka, the first is the more famous. It was a corrected version of the old astronomical text, Brahmasiddhanta. It was translated into Arabic, but erroneously titled Sind Hind. For several centuries the treatise remained a standard work of reference in India and the Arab countries. He also framed rules to solve a simple equation of the type ax + b = and a quadratic equation of the type ax² + bx + c = 0, as well as methods to sum up a geometric series. Besides, he noted the difference between algebra and arithmetic and so was the first mathematician to treat them as two separate branches of mathematics. incredible-people.com Home About Us Advertise with Us ... Contact Us Powered by: IndiaGolfGuide.com

    80. MSN Encarta Winkler Prins - Brahmagupta
    brahmagupta (geboren 598 nC), Indisch wiskundige en astronoom, werkte inUjjain (CentraalIndia). Zoeken in Encarta Winkler Prins naar brahmagupta
    http://nl.encarta.msn.com/encyclopedia_100043964/Brahmagupta.html

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 89    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter