Geometry.Net - the online learning center
Home  - Scientists - Bolyai Janos
e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 106    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Bolyai Janos:     more books (99)
  1. Fourier Analysis and Approximation Theory: Colloquium Proceedings (Colloquia mathematica Societatis Janos Bolyai ; 19-)
  2. Topics in topology (Colloquia mathematica societatis Janos Bolyai ; 8)
  3. Infinite and Finite Sets: To Paul Erdos on His 60th Birthday (Colloquia mathematica Societatis Janos Bolyai ; v. 10) by A. Hajnal, etc., 1975-04
  4. Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory (Colloquia Mathematica Societatis Janos Bolyai)
  5. Point Processes and Queuing Problems (Colloquia mathematica Societatis Janos Bolyai)
  6. Contributions to universal algebra: [proceedings] (Colloquia mathematica Societatis Janos Bolyai ; 17)
  7. Hilbert Space Operators and Operator Algebras (Colloquia mathematica Societatis Janos Bolyai)
  8. Progress in statistics (Colloquia mathematica societatis Janos Bolyai ; v. 9)
  9. Finite Algebra and Multiple-Valued Logic (Colloquia Mathematica Societatis Janos Bolyai) by B. Csakany, 1981-12
  10. Sets, Graphs and Numbers: A Birthday Salute to Vera T. Sos and Andras Hajnal (Colloquia Mathematica Societatis Janos Bolyai) by G. Halasz, L. Lovasz, et all 1992-12
  11. A. Haar Memorial Conference (Colloquia Mathematica Societatis Janos Bolyai) by J. Szabados, 1987-05
  12. Theory of Radicals (Colloquia Mathematica Societatis Janos Bolyai)
  13. Universal Algebra (Colloquia mathematica Societatis Janos Bolyai) by B. Csakany, etc., 1982-02
  14. Topics in number theory (Colloquia mathematica Societatis Janos Bolyai ; 13)

21. MSN Encarta - Search Results - Janos Bolyai
Join Now. Searched Encarta for janos bolyai . Articles MSN Encarta Premium.Get more results for janos bolyai . 3 results on MSN Encarta
http://encarta.msn.com/Janos_Bolyai.html
fdbkURL="/encnet/refpages/search.aspx?q=Janos+Bolyai#bottom"; errmsg1="Please select a rating."; errmsg2="Please select a reason for your rating."; Web Search: Encarta Home ... Upgrade your Encarta Experience Search Encarta Exclusively for MSN Encarta Premium Subscribers. Join Now Searched Encarta for ' Janos Bolyai' Articles J¡nos Bolyai Bolyai, J¡nos (1802-1860), Hungarian mathematician, who was one of the founders of non-Euclidean geometry, independently of Nikolay Lobachevsky and... ... (1817-1882), Hungarian poet, regarded as one of the greatest poets of Hungary. He was born in Salonta (now in Romania). While working... See all search results in Articles (11) J¡nos Hunyadi Books about "Janos Bolyai" Search for books about your topic, "Janos Bolyai" Magazines ... Learn more. Go to Magazine Center MSN Encarta Premium Get more results for "Janos Bolyai" 3 results on MSN Encarta 12 results on MSN Encarta Premium Click here to join today!
Advertisement
document.write('

22. Encyclopaedia Britannica Entry
bolyai, janos. Born Dec. 15, 1802, Kolozsvár, Hung. now Cluj, Rom. Died Jan.27, 1860, Marosvásárhely, Hung. now Târgu Mures, Rom.
http://www.aam314.vzz.net/EB/Bolyai.html
Bolyai, Janos
Born:
Died:
Hungarian mathematician and one of the founders of non-Euclidean geometry-geometry that does not include Euclid's axiom that only one line can be drawn parallel to a given line through a point not on the given line. Although Bolyai knew nothing of mathematics at the age of 10, by the age of 13 he had mastered calculus and analytic mechanics under the tutelage of his father, the distinguished mathematician Farkas Bolyai. He also became an accomplished violinist at an early age and later was renowned as a superb swordsman. He studied at the Royal Engineering College in Vienna (1818-22) and served in the army engineering corps (1822-33). Appendix Scientiam Spatii Absolute Veram Exhibens ("Appendix Explaining the Absolutely True Science of Space"), a complete and consistent system of non-Euclidean geometry. Before his work was published, Bolyai found that he had largely been anticipated by Carl Gauss of Germany. This was a profound blow to Bolyai, even though Gauss had no claim to priority since he had never felt enough confidence in his findings to publish them. Bolyai allowed the "Appendix" to be published with his father's Tentamen Juventutem Studiosam in Elementa Matheseos Purae Introducendi (1832; "An Attempt to Introduce Studious Youth to the Elements of Pure Mathematics"), but the essay went unnoticed by other mathematicians. In 1848 he discovered that N.I. Lobachevsky had published an account of virtually the same geometry in 1829.

23. The Statue Of The Two Bolyai's: Bolyai Farkas And Janos- Targu Mures (Marosvasar
Check out my website about, Targu Mures (Marosvasarhely) of Transylvania. Photo,description, internet presence of this city, link collection, URL.
http://www.levif.net/bolyais.htm
Welcome to my website about Targu Mures (Marosvasarhely)! Check out the photos and descriptions of this city. Transylvania, coin, currency collection, New York Targu Mures -photo album- Targu Mures Online ... This is the life...? It is the work of two sculptors from Targu Mures, Izsak Marton and Csorvassy Istvan, representing the two mathematicians: Bolyai Farkas – professor at the Reformed College – and his son Bolyai Janos – creator of the non-Euclidian geometry. The statue was unveiled in 1957 on the establishment of the Reformed College.

24. Janos Bolyai Store
janos bolyai Listing of 4 janos bolyai items available for purchase at ouronline store. Click here for janos bolyai and janos bolyai related products.
http://www.mathbook.com/bio/b/Janos_Bolyai/
Award Winning Electronic Explorer Globe
by LeapFrog
At Amazon
on 4-15-2003.
More Info

This award-winning globe could help children become A+ geography students. The Explorer Globe II is jam-packed with hundreds of facts, trivia, and useful scholastic information about every aspect of the geographical world. It electronically verbalizes everything from area population, capitol city/country, state/province, large bodies of water, currencies, high points, distance, and more. Other remarkable features make the Explorer an even more useful reference tool. It has a world clock that, once set from your home area, will tell the time in every other part of the world. And any country can be selected to hear a sample its national music (yes, Tahiti does have a national anthem). The globe sits on a sturdy base, which features a dashboard full of interactive functions and an attached soft-tipped stylus. This stylus is the key instrument: use it to touch virtually any point on the surface of the globe to retrieve information. Diane Beall
Batteries: 4 C batteries required.
Search ARC Spider
Privacy Statement

Visit Our Sites: Buy Law Books Top Quality Wrist Watches

25. Janos Bolyai Quotations Compiled By GIGA
GIGA s compilation of quotations, quotes, excerpts, proverbs, maxims and aphorismsby janos bolyai.
http://www.giga-usa.com/gigaweb1/quotes2/quautbolyaijanosx001.htm
Home Biographical Index Reading List Links ... Varying Hare Books GIGA QUOTES BY AUTHOR GIGA Quotes Quotes by Topic Authors by Date TOPICS: A B C D ... Z
PEOPLE: A B C D ...
QUOTATIONS
JANOS BOLYAI
Hungarian mathematician
BUY BOOK RELATED TO

JANOS BOLYAI

Out of nothing I have created a strange new universe.
- on the creation of a non-Euclidean geometry [ Geometry
WWW.GIGA-USA.COM
Back to Top of Page Top 100 ...
Quote Links
SUPPORT GIGA: Honor System Amazon Office Depot Target ... Field's The GIGA name and the GIGA logo are trademarks registered
in the U.S. Patent and Trademark Office by John C. Shepard.
Last Revised: 2004 November 22

26. Bolyai
Biography of János bolyai (18021860) János bolyai s parents were ZsuzsannaBenkö, from Kolozsvár, and Farkas bolyai, from Bolya (near Nagyszeben).
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Bolyai.html
Born:
Died: Click the picture above
to see two larger pictures Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Version for printing
Farkas Bolyai ... Farkas Bolyai ... when he was four he could distinguish certain geometrical figures, knew about the sine function, and could identify the best known constellations. By the time he was five he had learnt, practically by himself, to read. He was well above the average at learning languages and music. At the age of seven he took up playing the violin and made such good progress that he was soon playing difficult concert pieces. In 1816 Farkas wrote to his friend Gauss Gauss He studied at the Royal Engineering College in Vienna from 1818 to 1822 completing the seven year course in four years. He was an outstanding student and from his second year of study on he came top in most of the subjects he studied. He also had time to become an outstanding sportsman, and he continued to take his violin playing seriously and performed while in Vienna. His mother died on 18 September 1821 but he was able to continue his studies. When he graduated from the Academy on 6 September 1822 he had achieved such outstanding success that he spent a further year in Vienna on academic studies before entering military service. Of course he had received military training during his time in Vienna, for the summer months were devoted to this, but Bolyai's nature did not allow him to accept easily the strict military discipline.

27. References For Bolyai
References for the biography of János bolyai. E Kiss, Fermat s theorem inJános bolyai s manuscripts, Math. Pannon. 6 (2) (1995), 237242.
http://www-groups.dcs.st-and.ac.uk/~history/Printref/Bolyai.html
  • Biography in Dictionary of Scientific Biography (New York 1970-1990).
  • Biography in Encyclopaedia Britannica. [available on the Web] Books:
  • S Barna, Bolyai Janos (Budapest, 1978).
  • L Nemeth, The two Bolyais, The new Hungarian quarterly
  • Geometrische Untersuchungen (Leipzig, 1913).
  • History of Mathematics in Hungary until the 20th Century (Berlin-Heidelberg-New York, 1992).
  • (Budapest, 1970).
  • (Hungarian) (Budapest, 1978).
  • Johann Bolyai : Leben und Werk des grossen Mathematikers (Bukarest, 1955). Articles:
  • Proceedings of Symposium in Geometry (Cluj-Napoca, 1993), 7-23.
  • Mat. Lapok
  • M Bier, A Transylvanian lineage, The Mathematical Intelligencer
  • V F Kagan, The construction of non-Euclidean geometry by Lobachevsky, Gauss and Bolyai (Russian), Proc. Inst. History of Science II
  • Mat. Lapok
  • Math. Pannon.
  • Ocherki Istor. Estestvoznan. Tekhn.
  • Proceedings of the national colloquium on geometry and topology (Cluj-Napoca, 1982), 12-26.
  • Fiz.-Mat. Spisanie
  • Mat. Lapok
  • Mat. Lapok
  • Mat. Lapok
  • (Cluj-Napoca, 1979), 112-125.
  • Mat. Lapok
  • 28. The János Bolyai Mathematical Society
    The János bolyai Mathematical Society. You need a browser which supports framesto see the graphics version of this page! Textversion.
    http://www.bolyai.hu/
    The János Bolyai Mathematical Society
    You need a browser which supports frames to see the graphics version of this page!
    Text-version

    29. Üdvözöljük A BJMT Honlapján

    http://www.bolyai.hu/hu/
    You need a browser which supports frames to see this page!
    Text-version

    30. JÁNOS BOLYAI CONFERENCE ON HYPERBOLIC GEOMETRY
    Hungarian Academy of Sciences, Budapest; 812 July 2002.
    http://www.conferences.hu/Bolyai/
    ON HYPERBOLIC GEOMETRY Budapest Hungary Third Announcement
    and Programme Contents

    back to contents

    Invitation
    back to contents

    Credits Organisers back to contents
    Sponsors back to contents
    Programme Committee
    Chair: A. Prékopa (Hungary)
    Secretary: K. Bezdek (Hungary)
    Organising Committee Chair: Á. Császár (Hungary) Secretary: K. Böröczky (Hungary) back to contents Programme of the Conference The printed Programme booklet will be included in the Conference kit to be handled at the registration desk. The manuscript is available in the following formats: back to contents Registration and fees - preferably on-line ( Registration and Accommodation Form is available here) or - by fax (Bolyai Conference Secretariat, Viktor Richter, fax: +361 386 9378)

    31. A Névadó, Bolyai János életútja
    bolyai János 12 éves korában elvégezte a gimnázium 6. osztályát. bolyai Jánoseredményei annál is inkább figyelemre méltóbbak, mert rendkívül nehéz
    http://www.bjkmf.hu/history/bolyai.html
    1802. december 15. 1818. augusztus Folyamatosan betegeskedik.

    32. Bolyai János Gimnázium Online
    Salgótarján.
    http://www.bolyai-starjan.sulinet.hu/
    .: a lap betöltése folyamatban :.

    33. Bolyai, János
    By about 1820, János bolyai had become convinced that a proof of Euclid s postulateabout parallel lines was impossible; he began instead to construct a
    http://www.cartage.org.lb/en/themes/Biographies/MainBiographies/B/BolyaiJ/1.html
    Hungarian mathematician, one of the founders of non-Euclidean geometry. He was the son of Wolfgang Bolyai.
    Nikolai Lobachevsky
    had published an account of a very similar geometry (also ignored) 1829.

    34. Bolyai, János
    bolyai, János. (b. Dec. 15, 1802, Kolozsvár, Hung. now Cluj, Rom.d. Jan.27, 1860, Marosvásárhely, Hung. now Tîrgu Mures, Rom.
    http://www.phy.bg.ac.yu/web_projects/giants/bolyai.html
    Britannica CD Index Articles Dictionary Help
    s , Rom.]), Hungarian mathematician and one of the founders of non-Euclidean geometrygeometry that does not include Euclid's axiom that only one line can be drawn parallel to a given line through a point not on the given line. Although Bolyai knew nothing of mathematics at the age of 10, by the age of 13 he had mastered calculus and analytic mechanics under the tutelage of his father, the distinguished mathematician Farkas Bolyai. He also became an accomplished violinist at an early age and later was renowned as a superb swordsman. He studied at the Royal Engineering College in Vienna (1818-22) and served in the army engineering corps (1822-33). The elder Bolyai's fanatic preoccupation with proving Euclid's "Appendix Scientiam Spatii Absolute Veram Exhibens" ("Appendix Explaining the Absolutely True Science of Space"), a complete and consistent system of non-Euclidean geometry. Before his work was published, Bolyai found that he had largely been anticipated by Carl Gauss of Germany. This was a profound blow to Bolyai, even though Gauss had no claim to priority since he had never felt enough confidence in his findings to publish them. Bolyai allowed the "Appendix" to be published with his father's

    35. Bolyai János Kutatási ösztöndíj
    bolyai JÁNOS KUTATÁSI ÖSZTÖNDÍJ. Pályázati felhívás Pályázható tudományterületek Az MTA bolyai János Kutatási Ösztöndíj Kuratóriumának Szervezeti és
    http://www.sztaki.hu/providers/bolyai/

    36. Allmath.com - Math Site For Kids! Home Of Flashcards, Math
    bolyai, János. (180260). Mathematician, born in Cluj, Romania. After attemptingto prove Euclid s parallel postulate, he realized that it was possible to
    http://www.allmath.com/biosearch.php?QMeth=ID&ID=4298

    37. Web
    Az euklidészitõl eltérõ axiómarendszert vezetett be bolyai JÁNOS ésLOBACSEVSZKIJ (182332). A legáltalánosabban elfogadott axiómarendszer HILBERT-tõl
    http://www.jgytf.u-szeged.hu/tanszek/matematika/speckoll/1998/geometria/web.htm

    LOBACSEVSZKIJ
    HILBERT
    STEINER
    PITAGORASZ ... HEAWOOD
    nyelven.
    (Kr.e. 290/280-Kr.e.212/211) Az
    (Kr.e. 262?-190?)
    Pappos

    Ptolemaiosz '
    nemeuklideszi geometria
    Bolyai Farkasnak
    ... hiperbola
    -ra, ahol Monge Pascal
    Cauchy, Augustin Louis
    Sorbonne ... Dandelin, Germinal Pierre foglalkozott. Quetelet Desargues, Girard axonometria 1648-ban jelent meg. Pascal Pappos Elemek Hilbert ... Kempe Foglalkozott Heron Hilbert, David Az A Jordan, Marie Ennemond Camille Francia matematikus, az Kleinre Galois Klein, Felix Jordan ... Galois A Riemann Lambert, Johann Heinrich Legendre, Adrien-Marie Lobacsevszkij, Nikolaj Ivanovics ... Mohr, Georg Mohr levelezett Tschirnhaus Leibniz -zel is. Monge, Gaspard Gauss von Staudt Pappos ... Pascal, Blaise . A Leibniz Pitagorasz (Kr. e. 580/570-500) "pythagoreusi iskola" Az Theano Poincare, Henri Sorbonne divergens sorok ... Hensel Steinitz a (Kr.e. 624?-546?)

    38. Programismertetô
    Tanítványaink ? jobb esetben ? hallanak ugyan valamit bolyai János munkásságáról, Vizsgáljuk meg, mi az egyezo és mi az eltéro Euklídész és bolyai János
    http://www.jgytf.u-szeged.hu/tanszek/matematika/Bolyai/
    BOLYAI.EXE Bolyai.exe
    , a
    Dr. Szilassi Lajos

    39. Bolyai János Kéziratai
    bolyai János kéziratainak rejtett matematikai kincsei. bolyai János (1802?1860)a magyar és egyetemes tudomány egyik legnagyobb alakja.
    http://www.kfki.hu/chemonet/TermVil/kulonsz/k983/kiss.html
    Bolyai Farkas Gauss Az e i i e p i e p Disquisitiones arithmeticae Wolter von Eckwehr Lobacsevszkij Bolyai matematikai ismeretei Abel nek (1802–1829), Galois -nak (1811–1832), Eisenstein nek (1823–1852), Riemann Grunert Archiv der Mathematik und Physik. Leibniz Newton Bernoulliak, Euler, d’Alembert, Lagrange, Clairaut (Euler dolgozataival), a Lacroix, Lagrange, Laplace, Newton, Cauchy, Bolyai Farkas, Littrow, Mascheroni, Vega, Euler, Montucla Ettingshausen Wolter von Eckwehr Emanuel Zitta – jegyzi meg 1856-ban –
    IRODALOM [1] Carmichael, R. D.: On composite numbers P which satisfy the Fermat congruence . Amer. Math. Monthly, 19(1912), 22–27. [2] Dickson, L. E.: History of the Theory of Numbers, Chelsea, New York, 1952. [4] Jeans, J. H.: The Converse of Fermat's Theorem, Messenger Math., 27(1897–1898), 174. m [9] Lehmer, D. H.: Tests for primality by the converse of Fermat's Theorem, Bull. Amer. Math. Soc., 33(1927), 327–340. [10] Lehmer, D. H.: On the Converse of Fermat's Theorem, Amer. Math. Monthy, 43(1936), 347–354.
    http://www.kfki.hu/chemonet/TermVil/

    40. Bolyai János Forradalma
    bolyai János a magyar tudomány legkiemelkedobb alakja, Hosszú ideig tartottamagát az a vélekedés, hogy bolyai János az 1833ban bekövetkezett
    http://www.kfki.hu/chemonet/TermVil/tv2002/tv0207/prekopa.html
    PRÉKOPA ANDRÁS Bolyai János forradalma
    Elsõ rész Bolyai János

    Széchenyi Kinga emlékérme

    Hosszú ideig tartotta magát az a vélekedés, hogy Bolyai János az 1833-ban bekövetkezett nyugdíjaztatása után ugyan írt még egyet-mást, közöttük egy lényegeset is a komplex számok megalapozását illetõen, de az elismerés hiánya depresszióssá tette és lényegében a matematikai alkotó munkától is visszavonult. Kiss Elemér marosvásárhelyi professzor volt az, aki erre rácáfolt, miután egy évtizedes munkával a hátrahagyott Bolyai-kéziratokat átböngészte és azokban jelentõs, a kéziratok keletkezésekor új „matematikai kincseket” talált. Bolyai János tudományos nagyságát külföldön fedezték fel, a hazai elismerés csak ezután következett. A XIX–XX. század fordulóján a kontinensen már széles körben ismertté vált mûve. Angolszász területen is voltak, akik megismerték és lelkesedtek érte, de jóval kevesebben, mint Európában. A második világháború után a világ kétpólusúvá vált. Az oroszok nem sokat emlegették Bolyai Jánost, õk inkább Lobacsevszkij érdemeit hangsúlyozták. Amerikában pedig, mint említettük, nem ismerték eléggé tudósunkat. 1977, amikor Gauss születésének 200. évfordulóját ünnepelték világszerte, újabb fordulatot hozott. Jóllehet korábban is számos matematikatörténeti tanulmány szerzõje Gausst tekintette a nemeuklideszi geometria elsõ számú felfedezõjének, ez a tendencia felerõsödött, háttérbe szorítva Lobacsevszkij személyét is. Az orosz szerzõk sikerrel érvelnek e nézetek ellen Lobacsevszkij érdekében. Nekünk magyaroknak is kötelességünk, hogy rámutassunk, hol van Bolyai János helye a matematikatörténetben és az egyetemes kultúrtörténetben. A nagyvilág elé kell tárnunk erre vonatkozó dokumentumainkat és kutatási eredményeinket.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 2     21-40 of 106    Back | 1  | 2  | 3  | 4  | 5  | 6  | Next 20

    free hit counter