Athens/Institution Login Not Registered? User Name: Password: Remember me on this computer Forgotten password? Home Browse My Settings ... Help Quick Search Title, abstract, keywords Author e.g. j s smith Journal/book title Volume Issue Page Journal for Nature Conservation Volume 11, Issue 1 , 2003, Pages 59-66 Abstract Abstract + References PDF (135 K) Related Articles in ScienceDirect The impact of hydrochemical boundary conditions on the ... Journal of Hydrology The impact of hydrochemical boundary conditions on the evolution of limestone karst aquifers Journal of Hydrology Volume 276, Issues 1-4 15 May 2003 Pages 240-253 Douchko Romanov, Franci Gabrovsek and Wolfgang Dreybrodt Abstract The early evolution of karst aquifers depends on a manifold of initial and boundary conditions such as geological setting, hydrologic properties of the initial aquifer, and petrologic properties of the rock. When all water entering at various inputs into the aquifer has equal chemical composition with respect to the system H early evolution under conditions of constant head exhibits breakthrough (BT) behaviour. If the chemical compositions of the input waters are different, deep in the aquifer where the saturated solutions mix renewed aggressiveness occurs, and additional dissolutional widening of fractures by mixing corrosion (MC) changes the hydrologic properties of the aquifer. To study the impact of MC on the evolution of karst we have modelled a simple karst aquifer consisting of a confined limestone bed, with two symmetrically located inputs at constant head and open flow conditions along the entire width at base level. To calculate dissolutional widening of the fractures the well-known dissolution kinetics of limestone was used, which is linear up to 90% of saturation with respect to calcite and then switches to a nonlinear fourth order rate law. First, two extremes are modelled: (a) Both inputs receive aggressive water of equal chemical composition with [Ca | |
|